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ABSTRACT

Attention is focused on the scalar reaction-diffusion emuatlon:

ut  A x u + f(u), where f is cubic-like and f(0) = f(l) = D. Amonst

spherically symmetric solutions it is proved there is a bounded unstab1'

equilibrium which is decreasing in radial profile. Under a concavity: as um -

tion on f this equilibrium is unique. Moreover there is a unicu-c tx~anii::

spherical wave which is defined for all time, positive and nec]ative. As

t -- - this wave approaches the unstable equilibrium.

Aronson and Weinberger [2] have proved before that, in all space dimen-

sions, there are non-trivial solutions that propagate (u(x,t) -- 1 uniformly

on compact sets as t +c) and ones that decay (u(x,t) - 0 uniformly as

t . This suggested the existence of the unstable equilibrium.

There is an interesting global description of this propaqation/decav effect.

The set of initial data whose associated solutions approach the unstable enui-

librium as t - +- splits a natural set of functions into two sets. Data from

one set yields a solution that propagates, and data from the other set, a soli-

tion that decays. This fact is closely related to the uniqueness of the ex :and-

ing spherical wave.

AMS (MOS) Subject Classifications: 34B25, 34C35, 35B40, 35K55.

Key Words: Reaction-diffusion equation, spherically symmetric wave, travellinc

wave, equilibrium solution, compact-open topology.
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SIGNIFICANCE AND EXPLANATION

Reaction-Diffusion Equations have been used to model nerve impulse pro-

pagation and spatially inhomogeneous situations in chemically reacting systems

and population genetics. The kind of solutions that are often of interest in

these areas are wave-like and do not die out.

If the underlying spatial domain for the equation is one-dimensional, the

description of such wave behaviour amounts to findinq a travellinc wave. This

is a solution whose evolution in time under the equation is given by translatin

along the axis. A nerve impulse is an example of a travelling wave.

If a wave in higher dimensions is expected, for instance one that is a

function only of radius in a spherical co-ordinate system, this mathematical

approach is not available. Such spherical waves look like one dimensional waves

a long way out. In this report we invert this idea and deduce spherical wave

behaviour in a model example where there is a stable one dimensional travelling

wave. This approach also determines the remaining work that is necessary for

a complete picture of the spherical wave behaviour for this equation.

Accr-sion For

rDC rA
Unnu ouc ed
Juztific.tion

By__________

Avail aind/or
Dist special

The responsibility for the wording and views expressed in this descriptive summary

lies with MRC, and not with the author of this report. &

I
.*-[ l~ lII 1 , -.4 .... ---*,.~j

4. *4 *-



ACKNOWLEDGEMENTS

S

The influence on this work of Professor Charles Conley is obvious

to anyone that knows him. For this, his guidance and understandinQ, I

thank him.

This work has benefited from ideas injected by many people includ-

ing Professors Neil Fenichel (of British Columbia), Michael Crandall,

William Symes, Craig Evans (of Kentucky) and Rueben Hersh (of New

Mexico), I am grateful to each of them. My thanks go to fellow araduate

students Gary Schroeder, Rick Moeckel and Tim Trucano (of New Mexico)

for expressing helpful ideas and lending patient ears.

Professors Charles Conley, Michael Crandall, Paul Rabinowitz,

John Nohel and Harmon Ray formed my Ph.D. committee, for which I thank

them.

I am grateful to the Teaching Assistants' Association for making

the life of a TA at Madison as comfortable as such a union can and

keeping a TA's duties manageable enough to allow graduation within a

reasonable amount of time.

To my wife, Jane Mulrooney, for her love and emotional support

through my years of graduate study, I owe my thanks.

To the Mathematics Research Center goes my gratitude for suport-

ing me this semester and, in particular, my thanks to Judy Siesen of

MRC for doing such a beautiful job of typing.



SPHERICALLY SYMMNETRIC WAVES OF A REACTION-DIFFUSION E gUATION

Christopher K. R. T. Jones

Chapter 1 _______

Introduction

I. MOTIVATION

Reaction - Diffusion equations often exhibit persistent wave-like

behaviour. Examples of this are the travelling pulses of the Fitzhugh-

Nagumo and Hodgkin-Huxley equations, travelling fronts in some scalar

equations such as the Fisher equation and target patterns and spiral

waves in some models of the Belousov-Zhabotinskii reaction. Such phe-

nomena as these usually depend on the underlying spatial domain being

unbounded. This is in sharp contrast to the case of scalar

reaction - diffusion equations on a bounded domain where enermy argu-

ments show that all solutions decay to some equilibrium.

The wave phenomena in one space dimension, such as the travellinq

* pulses and fronts mentioned above, are often mathematically tractable.

This approach is to find an appropriate solution to the travellina wave

equations, which are ordinary differential equations, and then try to

prove that they are stable as solutions to the full partial differen-

tial equation. When genuinely higher dimensional effects are involved,

as in the case of target patterns or spiral waves, this mathematical

attach is not available. Results have been obtained in some model

situations derived by making simplifying assumptions, as in the work of

Greenberg, Hassard and Hastings [11 and Kopell and Howard [1,2,31. The

main difficulty appears to be that, in general, there is not a specific

mathematical object, like a travelling wave, whose discovery would

prove the existence and supply a description of such behaviour.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024
and Grant No. DAAG29-77-G-0004.

_ _RO i



In this work we develop a technique for handling sphericall. s',-

metric waves of reaction - diffusion equations. If a syztm 

ically symmetric waves then it would also have some correspondinq

one-dimensional waves, loosely speaking, these would be the spherically

symmetric waves "at infinity". The technique is to invert this idea

and deduce the existence of spherical type wave behaviour from knouir,(

one-dimensional behaviour. We hope that this approach will give some

general conditions under which such higher dimensional wave behaviour

exists but it cannot give details about the formation of these waves;

this is an inherently higher-dimensional problem and could not be

deduced from knowledge of the one-dimensional mechanisms.

We focus our attention on the bistable equation which is described

in section III below, since that equation has the useful property of

possessing an unambigously stable travelling wave. The result of

applying the technique to this equation is that it guarantees the exis-

tence of spherical waves that are asymptotic to the one-dimensional

travelling wave at infinity and also isolates the work that needs to be

done to get a complete picture of the phenomenon; we also carry out

this work.

II. GENERALITIES

In the most general case, we shall consider a system of reaction -

diffusion equations of the form

(1.1) ut  Au + f(u)

- .mmnma ..dmm mlu mm ~mm w lml)
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where u E 3m , x = (x ... ,x) , n = 3 and
i=l 3x

* 1

m mAu = (Ault ...,AU). We shall always assume that f : - JR is
1 m

smooth.

The natural problem for such a system on all of n is an

initial-value problem, i.e. a solution u(x,t) should be determined by

its initial condition u(x)

(1.2) u(x,O) = u(x)

We can therefore hope that such a system determines a semiflow ori

some appropriate function space. A semiflow on a space Y is a func-

+ +
tion S : Y x R - Y (whose domain may not be all of Y x IR , but

must be an open subset) which satisfies (1) S(S(y,t),s) = S(y,t+s)

and (2) S is continuous on its domain. S is said to be a local

semiflow if for each y E Y, a set of the form (y,[O,s)) for some

s > 0 is in the domain of S. S is a global semiflow if it is

+
defined on all of Y x R .

For the equation (1.1) Y will be some function space and

S(y,t) = u(x,t) where u(x,t) is the solution with initial condition

u(x,O) = y. The space Y will usually be the space of bounded uni-

An m wihwl edntd
formly continuous functions u :R n _R which will be denoted B.

We are interested in locating parts of B that exhibit certain asymp-

totic behaviour (in particular, wave-like behaviour) when the semiflow

is applied. The following definitions, due to Fife [1,21, clarify this

quest.

A
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The group of transformations that leave the Laplacian invariant,

and so also the equation, are exactly the rigid motions; call this

group R(n). R(n) acts in a natural way on B; if T - R(n) then

Tu(x) = u(Tx). Therefore one can see that the space B/R(n) inherits

the semiflow which shall also be denoted by S.

Definition 1.1. u,v E B/R(n) are said to be asymptotically equivalent

if there exists a T E P such that

liM IIS(u,t) - S(v,t+T) 1 = 0
t-),

nwhere the norm used is the sup norm over all of n

Definition 1.2. An asymptotic state G c B/R(n) is an equivalence

class of initial data under this relation. G is said to be a stable

asymptotic state (SAS) if it is open in B/R(n).

As mentioned earlier one attack on reaction - diffusion equations

is to look for special solutions such as equilibrium solutions, travel-

ling waves etc. In general the least one might expect of solutions

that warrant such attention is that they be defined for all t E P.

Such a solution would certainly be "special" as the equations are para-

bolic and so only forward existence would be expected in general.

Definition 1.3. A solution u(x,t) to (1.1) is said to be a permanent

solution if it is defined for all t E R.

Satisfaction of the ultimate dream for a given reaction -

diffusion equation would be a description of all its SAS's and the

location of all their bounded permanent solutions.

We cannot usually expect to be able to prove that a certain set is

a stable asymptotic state with respect to all of B, but in a given

4'al
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problem there may be a natural subspace of B in which the asymptotic

state can easily be proved to be open. This will. only be meaningful i

that subspace is invariant, or at least positively invariant.

Definition 1.4. A c Y is invariant under S, if S(t)A = A for all

t > 0. A is positively invariant if S(t)A c A for all t -> 0.

Suppose A c B is positively invariant.

Definition 1.5. A set G is an SAS with respect to A if it is an

asymptotic state and it is open in A.

In regard to looking for permanent solutions one of the useful

ideas of dynamical systems is that of an u-limit set. If A c Y then

*i

w(A) = r) cl(A [ t,-o))

t >0

The crucial property of w-limit sets is that they are closed and

invariant.

A consequence of this is that points in w(A) have local backward

existence but the solutions may blow up in finite backward time, so

w(A) need not consist entirely of permanent so~uitions. If however we

knew that S was a compact semif low on Y (see chapter 4, section I)

then uCA) is a compact, non-empty set that consists entirely of per-

manent solutions.

This compactness property is not satisfied on B if it carries

the sup-norm topology, however we can replace this with the compact-

open topology, without destroying the semiflow property, and the

for notation see section IV

A
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compactness condition is satisfied. Pe-manent soluti on : ,

found by calculating the u-limit set of a boun-ed con.:":-5 "

the SAS in question.

III. THE BISTABLE EUATION

Although the main abstract construction of this " rk a7--iev,

any system of reaction - diffusion equations the on!-, ati~zt:c::

worked out is tc the scalar equation, called the bistable czuai

(1.3) ut = Au + f(u) ,

where u c 3R. We split the assumptions on the nonlinearity f into

two parts:

(HI) f : R - IR is smooth. f(0) = f(1) = 0 and thar- is a

unique a, between 0 and 1 such that f(a) = 0.

Furthermore f'(0) < 0, f'(1) < 0 and f f(u)du > 0.
0

(H2) For all a < 8 < 1 f"(8) < 0.

Roughly speaking, if f satisfies (H1) then it is of the form

shown in Figure 1.1

y y=f (u)!u
a

Figure 1.1



where the area of the hump above the x-axis is biager than that o: t!.

hump below. If f satisfies (H2) then the hump above is concave Jaw:.

It will always be assumed that f satisfies (Hl), (H2) will be us

a crucial uniqueness result in chapter 2 and it will be clear w-

clusions can be made when (H2) is not satisfied. We shall assume

nothing about f outside the interval [0,1] as all our attention

will be restricted to data in this set; this is possible as, by the

maximum principle (see Chapter 3, section II): if 0 < u(x,O) < 1

then 0 < u(x,t) < 1 for all t > 0.

The crucial property of the scalar equation with this f(u) is

that it has a unique (up to translation) travelling wave in one space

dimension which is stable in a very strong sense. In other words, it

has a unique solution of the form u(x-ct) which satisfies the bound-

ary conditions u(--) = 1 and u(+m) = 0 (see Aronson and Weinberger

[1] and Fife and McLeod [1]). Fife and McLeod's theorem is the stron-

gest stability statement, it says that the travelling wave is exponen-

tailly stable to all initial data which lie above the middle zero at

- and below it at +- (it is reproduced here as our theorem 5.1).

A standard maximum principle argument implies that u - 0 and

u E 1 are stable (this is the source of its name) to perturbation- in

the sup-norm, u E a is unstable by the same reasoning. The travel-

ling wave determines the asymptotic behaviour of data that are transi-

tions between the two stable states. Heuristically we could take for

initial data characteristic functions of a set; then if u(x,O) is the

characteristic function of a half-line (--,a], u(x,t) tends to a

translate of the travelling wave as t -+

is u -w ow .

T~- -,



In any space dimension we could take u(x,O) to be tite characte:r-

istic function of a compact set D. If D is large enough and more or

less spherical then at the edge of D u(x,O) will not be too unlike a

plane front and so one might expect it to propagate in the same fashion

as a one-dimensional wave. On the other hand if D were too small we

might expect the solution to tend to zero everywhere. Aronson and

Weinberger [2] have shown that both of these phenomena occur. They

give an integral condition, that will cover some data of the above

form if D is small enough, which ensures decay of the corresponding

solution. They also give a condition for propagation (u(x,t) - 1

uniformly on compact sets). The latter theorem specialized to the case

under consideration is:

Theorem 1.1 (Aronson and Weinberger [2]). With f satisfying (Hl)

there is an indexed family of functions on Rn say {uQ, c Al, each

with compact support, so that if, for some A

u(x,O) > u (x) for'all x E

and u(x,t) is a solution of (1.3) then u(x,t) - 1 uniformly on com-

pact sets.

They also prove that the propagation has an asymptotic speed which

is that of the one-dimensional travelling wave, but we shall not go

into this here.

In particular, from the above theorem we know that there is spher-

ical wave propagation for (1.3), it is this pehnomenon that we shall

analyze.



9I
IV. SYNOPSIS

From Aronson and Weinberger's results, there is a 'threshold

effect', i.e. some solutions decay and some propagate; this suggests

that there is an unstable equilibrium solution which demarcates the

boundary between these two regimes of behaviour. In chapter 2 we prove

the existence of such solutions and under the assumption that f

satisfies (H2) we prove it is unique. This solution is obviously

unstable and under (H2) we prove that the linearized operator at this

equilibrium solution has one positive eigenvalue which, loosely speak-

ing, represents one dimension of decay and propagation.

The remainder of the work is devoted to giving a global picture of

this propagation/decay behaviour, using the solution found in chapter 2

as a pivot.

In chapter 3 we compile the necessary information for applying the

concepts and methods of dynamical systems. Except for section IV this

chapter is all standard material.

In chapter 4 we construct the basic machine that gives out spheri-

cal information when we plug in facts about the one-dimensional behav-

iour. in this chapter we describe the "spherical attractor" when f

satisfies (H2), this is the set of permanent solutions that are rele-

vant to this propagation/decay effect.

In chapter 5 we refine the machine of chapter 4 to include a mov-

ing co-ordinate frame; this gives finer information about the spherical

waves. We also prove the necessary one-dimensional facts in this

chapter.

4
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In chapter 6 we sum the work up and translate thu r-,

language of dynamical systems into terms that are el -......

ture on reaction - diffusion equations.

Notation

(1) For a set A: Int(A) = interior of A;

0cI(A) = closure of A; A = complement of A.

+ +

(2) If S : Y x R - Y is a semiflow and A c Y, I c

S(t)A = {S(t)yly E A); A • t = S(t)A;

A • I = {y • tly E A, t E I}.

(3) B = {u : n - l u is bounded and uniformly continuous

IHUfIB -- ull- = sup lu(x) I

nnn

(4) If P = f [ai,b i ] is an invariant rectangle (see chapter 3,
i=l

section 2), then M(P) c B is given by:

M(P) = {u(x) = (u(x) = (u (x),.... u ))a < ui(x) < b fL~r

every x c JR n and supplied with the compact-open topoloq:.

The dependence on P is usually omitted.

(5) If u(x,t) and u(x) are used together, then u(x,O) u(x).

Im



Chapter 2

Equilibrium Solutions

I. ONE DIMENSIONAL CASE

In this chapter we shall prove theorems on the existence, unicuc-

ness and spectral properties of nonconstant equilibrium solutions of

(1.3). We shall firstly review the well known case of one sl ace ciilm.-

sion.

An equilibrium solution in one space dimension satisfies the

equation

(2.1) u + f(u) = 0
xx

We a*r& inteifes't~d in solutions that decay to 0 'at' x = -. Trans-

forming (2.1) into a system of ODE's gives

U' = V

(2.2) _ d
dx

V'= -f(u)

which is Hamiltonian and so the phase portrait is easily drawn

1i

_ _ _ _ _i Il .
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V

Figute 2.1 .

From this we can see that there is a unique non-trivial. solution (up to

translation) (U(x),v(x)) which satisfies the boundary conditions,

namely the "body of the fish".

Looking for the eigenvalues of the linearization around this solu-

tion leads to the equation

U' =V

(2.3)d
dx

V= (A f'(;))u

Using the fact that (v(x),v'(x)) is a solution for A~ - 0, by stan-

dard comparison arguments it can be shown that there is a unique

A~ > 0 for which (2.3) admits a bounded solution.
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In the following sections we shall show that the same structure

shows up in the higher dimensional case.

II. EXISTENCE

We seek spherically symmetric equilibrium solutions of (1.3);

these are solutions of

(2.4) u + n-I u + f(u) = 0
rr r r

Theorem 2.1. For fixed n and f satisfying (HI) there is at least

one bounded non-constant solution of (2.4) that satisfies

u(r=+ ) =0

Proof: Transforming (2.4) into a system, we get

d
(2 .5) 

d -
dr

n-l f()
r

Roughly speaking, when r = + we have the equilibrium equation

for the one-dimensional problem. In order to make this precise we per-

form the transformation p = r

U' = V
(n-l V lp

(2.6) v' (n-i) (-p) v - f(u) = d
P dr
2

P' = (l-P)

There is a singular surface at p = 0, but otherwise this equa-

tion is well defined on P 2 x [0,11. The phase portrait in the

section p = 1 is easily seen to be that of Figure 2.1.

i~lOw"



Since the solution must be regular at the origin, " ,

tion of (2.6) that satisfies the boundary conditions

(2.7) v(0) = 0

(2.8) u(M) = 0

(2.8) means that the purported solution must lie in the set W Ci'.-.

by:

W = {(u,v,p) I (u(r),v(r),p(r)) - (0,0,1) as r - +

and (u(0) ,v(0),p(0)) = (u,v,p) .

By standard results, see for instance Kelley [1], there is a

local center-stable manifold, call it Wc s  at (0,0,1) whose tan-loc at(,,)woet-

gent space is generated by s and (0,0,-l) where s  is any vectcr

*ih "uv space tangent to the stable manifold of (0,0) in Figure 2.1.

Now let T(r) be the solution operator of (2.6), for all r
ccscs wCS

T(r)W c W. Define Wc s 
= U T(r)Wc , then W c W. Since

loc r<0 bc

W {p=l} contains points in the positive quadrant of the u,v

plane, see Figure 2.1, if r is sufficiently large negative T(r)W1
cso

contains these points. Therefore, since W c  is a manifold and T(r)

csis a diffeomorphism, T(r)W c n {p = p < 11 intersects the positiv

quadrant of p = p, for p close to 1.

The points W n {u, v > 0} stay in {u, v > 0) under application

of T(r) for r < 0. To see this we must consider the Hamiltonian of

the one-dimensional equation

v u
H(u,v) 2 + f f(s)ds

0

OW/



We compute H along orbits of (2.6)

(n-i) (1-0 ) 2

so if p y 1 and v :K0 then < 0. For the one-dimensional equa-

tion the energy curves are the sclution curves. if p 4 1, the solu-

tions of (2.6) cross these curves with decreasing energy. We borrow

the two curves C 1 and C 2 in Figure 2.2 below from Figure 2.1 %t!hey

are part of the energy surface H = 0) and setting

C3  = v, y < U < 11 and C4  f u=!, v > 0}, it is easy to see that

the vector field in the p =P sli C e is as depicted on

C C1 L C2 U C3 U C4 '

I.y. C4

-4

CC

2u

Figure 2.2

so the region bounded by C in the upper half-plane is negatively

&invariant. Since A< 0, W C must lie outside H =0 and so it

"_ _______i
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crosses C on C 3 for I close to 1. Therefore W intersects

the positive quadrant for every p > 0.

Let c > 0 be a fixed small number and define a set D bounded

by the four lines

U = a, -E < V < C; V = :-E, U < 1; U = 1, -£ < v E

From the above W n D n {o=p) for every p > 0. We want to show

there is a solution in W which is in D at some p and stays in

for all 0 < p < p, renormalizing the independent variable then gives

one that satisfies (2.7).

Let D = D n {v>O and D = 2D n {v<0}, then for every ',
U L

- CS
14 n Io=P1} 11 D and W n ,p=pl n D L J

If p is small enough the vector field on 3D is as shown below

vv

Figure 2.3

For this p, let F be a compact curve in W n (p=p} that in'ter-

sects D and D,, such a curve clearly exists. Let FU = (y E P

for some r < 0 T(r)y # D but T(r)y c {v>0}} and FL  be the

ddi.-- - -- I ...

" °_-- mmm ao 'mil
-n' m m na m n m l
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corresponding set with v < 0. FU and FL are obviously both open

and from the picture in Figure 2.3 are both non-empty but then

F U FU U FL

so there exists y c F that stays in B for all 0 such that

0 < p < P. This completes the proof of Theorem 2.1.

This solution, u(r), found in theorem 1 satisfies the following

two properties

(A) u'(r) < 0 for all r E (0,+w).

(B) y < u(0) < 1 where Y : a < y < 1 is determined by the

Y
condition f f(s)ds = 0.

0'

Property (A) is clear from the fact that the region described in

Figure 2.2 is negatively invarianL. Since W cs  lies outside H = 0

it is clear that u(O) > y. To see that u(0) < 1 we apply the maxi-

mum principle. Since u E 1 satisfies (2.4), by an application of the

mean value theorem w = 1-u satisfies

(2.9) Aw + c(x)w = 0

for some bounded function c(x). But by (A) and the obvious fact that

u(O) < 1 we see that 1-u > 0; but then, by the maximum principle,

see Protter and Weinberger [1], 1-; cannot have an interior minimum

of zero which it would if u(0) = 1.

fS
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III. SPECTRAL ANALYSIS

In this section we consider the eigenvalue roroble. fr t ..

rized operator around a solution u of the form found a. t.

Specifically we want to know for which .'s the equation

(2.10) Au + (f'(u)-\)u = 0

admits a bounded solution. In particular we want to know f')r i.:

A > 0 (2.10) admits a bounded solution.

It follows from standard results, see e.g. Reed and Simon [1v

IV, that any positive eigenvalue must correspond to a srhericall- 2:- -

metric eigenfunction. This comes from the fact that , is an eicur--

value with an associated n-dimensional eigenspace generated by

{u ... ,u } (this is the translation eigenvalue) and each of the. e
1 . .i

has no zero except at zero. The rest of the spectrum is bounded away:

from zero to its left.

So we look for solutions of the equation, with X > 0,

(2.11) Ur + n-- u + (f'(u) - X)u = 0rr r r

Theorem 2.2. If f satisfies (Hl) and (H2), there is only one

for which (2.11) admits a bounded solution and that A is positivc.

Proof: Converting (2.11) to a system

u' =v
(2.12)

= - v + (0 - f'(u))ur

The associated angular equation is

-1( f ())o 2 62(2.13) 0' = n sin cos 0 + (A - u - sin e
r
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where

e = arctan(-)
U

We only have to worry about solutions of (2.13).

Roughly speaking, at r = + (2.13) is the angular equation for

the system

U' =V

(2.14)

V'= (A-f'(u))u

This equation has stable and unstable subspaces which are lines of

slope -XA- f'(0) and +/A - f'(O) respectively. Let & be the

angle (in the fourth quadrant) that this stable subspace makes with the

u-axis. It is not hard to see that if (2.12) has a bounded solution,

the corresponding solution e(r) to (2.13) must satisfy

(2.15) e () = 0 (mod i)

It is also standard that thore is a unique solution, e (r) (mod )

of (2.13) that satisfies (2.15).

The proof requires a study of x(r) and its limit as r tends

to 0. The solution of the full equation remains bounded only if

0 x = (0 (mod i), so the question is for what X's can we have

(2.16) x(0) = mIT for some m ?

We will split the proof up into three parts but firstly we make

some preliminary observations. We must have m > 0 as when 0 = -7/2,

0' = -1. The A's which work for m are decreasing in m, that is,

if X. works for m. i = 1,2 and m I < m 2 then A2 < A . This

OW2N
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follows from the fact that if > , and e (r), " (r) are solutions-

of (2.13) with ? and A respectively then if O (R) *--(R) (we ma..

even have R = += here) then 6 (r) < e(r) for all r < R. This

latter fact is proved by a comparison between the A and I eauations.

From this we know that the set of X's givinq an affirmative

answer to (2.16) are bounded above and the associated m's are increas-

ing with decreasing X. The rest of the proof is split up into vrovinq

the following three parts.

(1) For a given m there is at most one X which satisfies

(2.16).

(2) There is a A > 0 for which 6 (0) = 0.

(3) 0 < 0 (0) < T.

Once these are proved the proof is complete since, by (3) and the
. .. . . - . 4 . . o

decreasing property, if (2.16) can be solved for m 1, the associated

A must be negative and therefore so must all other X's be negative

associated to any m > 1. The only possible X > 0 must therefore

correspond to m = 0, from (1) there is a unique such A and (2) shows

that it exists. The hypothesis (H2) is used in the proof of (3) and

this is perhaps the heart of the theorem.

Proof of (1): Suppose X satisfies (2.16) for some m, we firstly

show that 6A(r) is the only solution (mod n) of (2.13) (with A

fixed at this value) which satisfies (2.16).

Suppose it were not, then we would have two solutions (ul,V l

and (u2,v2) of (2.12) with the property that v1 - v2 -* 0 as

r -0, and also that u= u - u2, v= v - v2 is a solution of

I

l MW MM... ;I*
-7 -,4 *4 10,



(2.12). The angular and radial equationsz of (2.1,) arec- -iv.cn by (213

and

(2.17) =-(sin 0 cos e (1+A - f ' u)) - s 0)
r

where

2 2 1/2
p =(u + v)

From (2.13) if r is small ernouzh the si-a;!ed ccnc '.-i- cai

invariant (down to r =C)

V

u=V

I//I /

1 2

so (U 1 V 1) (U 2 V 2

&Q
7. RF



Assume that A 1 ' then there must a

( R)> 0. (R). But then there txis a t

2 A 2  call it e (r) ,sc that

e CR) ()

but then for all r '4 R (r) (r) and 511Cc-

1 2
unique solution of (2.13) with 2that sati j;7 ,ic

e (0) > muR and so 6 (0) > M7-.

Proof of (2): That such a >, exists for mn = 0 oc..

straightforward shooting argument using the two facts:

then 0 (0 < a ) and (ii) if X = 0, 0)(0) ' -/2.

(1) follows from the fact that if > > 0, 1

Cfrbm (2.13))* and so 5'(r) < e for all r > 0. For (ii) (2-1,
A -

be compared, when X 0, to the angular equation of

U, =v
(2.18)

=t n-l -fuu+

r

which has a known solution, namely u'(r). It is easy to seo thnat

forces 0 (0) > 7r/2.

Proof of (3): For the remainder of this section we shall be discwsIi-,-

(2.13) with X = 0 and so, for the sake of notation, will drop tlh...

subscript 0 on 8 and e6 (r). With A = 0, (2.13) is

01 0 '-cS

(2.19) 6' =-1!-- sin 8 cos 8 f Cu~cs sin2
r

PON4~
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This is also the angUlar e::uation of the tangent (cr firft var1. t123

equation~ of (2.12) about the solution (U (r) , V(r) a -'17 i S L~e

angle of the stable manifrold to (C), 0) in Fi, uro 2.1. Co -: -..o nt'

6(r) is the ar(ale of the tangent line to the manifold

RR

this is a -ranif1clz vet, a p~roof cf this is in section III, -.,; .'e

know it ccntains a m:.aifoLd, nam-:Dy ' Sf I c *-.

following arguments this suffices.

V

R OR

Pigure 2.5

We miust prove that 6(0) < n, we do this in two steps, it is in.

step 2 that the hypothesis (H2) is used.

Riemark: (3) is about 6(r) which is a solution of (2.13) asso-

ciated to a ;(r) which satisfies (2.4), (2.8) and its derivative

Mw;*- ~i
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satisfies (2.7). But in fact we only need that (2.4) and (2.8) are

satisfied to obtain that 0(0) < IT or v(O) > 0. We shall use this

fact in the next secticn.

Step 1: We prove that if V(R) 0 then u(R) > a. Define the set

WCS w 
c  

_ R 1 then define D (u,R I )ItJcs ha5 a horizon-
R R+1' R 0RI

tal tangent line orposite u and R0 < R < +MI. If we assume

u(R) < a then since also DR  is closed, there is an R such that

(u,R) e DR0 for some u and if (u1 OR1 ) E DR0 Ul > u ad if U1 = u

then R1L < R.

So W s must cross energy levels of H in increasinq value
R

opposite uI close to but less than u. See Figure 2.6.

V

Figure 2.6

A7
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So then there are points (u ,v) and (u ,v )on W so that if
21 22 R

(U.Cr),v.(r)), i =1,2 satisfy (u.(R),v.(R)) ( u.l,), we have

H(u,,v 1 > H(u 2fv2

and yet (u.i(r),v.(r)) - 0 as r -*+. Recall that

(n-i1) (:v.(02
A(u .(r),v ir r)) r 1

fron the definition of R and the fact that u 1 < u 2  we have

v 1(r) < v C r) and so H~u ICr),v C r)) < H(u C r), r)btte

H~u 1(-),v I(w)) > H(u. (-),v 2w) which is a contradiction and so

U(IR) > a.

Step 2: If 5(R) = f then v(R) > 0 CR > 0).

Consider the angular variation of the full nonlinear equation

(2.5) about the point Cct,0) in the u,v-plane,

iP=arctan(-)
u-a

Thi-s quantity satisfies

(2.20) - sin ~pcos f,( - fC)cos 2 sin 2 i + g(r)

where g(r) is given by the expression

f (u) (u-ct) - 2
g(r) = -2 - 2+ f'CuMcos ~

v +u-)

fE(u) (u-00) + f' (u) (-a2
Cuct

v +u-a

- 2 -_. (f (u) (u-c) - f u)

2



Now if f"(u) < 0 then f' (u)(u-a) - f(u) < C and so i-

have

(2.21) g(r) 0 0

Suppose 8(R0 ) = 0, then u(R 0 > a and so u(r

(unless v(r) becomes fairly positive, which case does :.ot

us). By (H2) if u > a,f"(u) < 0 and so if r E, (2.21

Since u(R0 ) > a, 4(R0 ) >-7/2.

5(r) - 7 satisfies (2.19) and ,i(r) satisfies (2.20) ar,- .
,0(Rr )- -r

(R0 r < (R 0 ) we must have e(r) - 7 < 1p(r) for all r suc:.

0 < r < R 0  So if 5(R) = 7T, p(R) > 0 and so v(R I ) > 0. If P

we have strict inequality and since 0(R ) - r < ;.R) ,

(in the proof of (1)) p(r) can be compared to another solution of

(2.19) and so p(0) > 0 in this case also. In either case v(R)

and the proof of step 2 is complete.

To complete the proof of (3) notice that we have shown that if

0(R) = 7r then v(R) > 0, but this is impossible for any solution o-

theorem 2.1 as according to property (A) v(r) < 0. So clearly we muet

always have 5(0) < w.

IV. UNIQUENESS

From the fact that the region bounded by C in Figure 2.2 is

negatively invariant the only solutions to (2.5) that satisfy the

boundary condition u(+-) = 0 and stay between 0 and 1 must

satisfy properties (A) and (B) at the end of section I.

-A

-- - 7



Wcs  is obtained by iterating Wc s  in backward r and is cons.-
loc

quently a manifold, but we do not know yet that everything which ten4cs

to (0,0,1) as r -* + is in W c s , i.e. intersects Wilc "

In a neighbourhood of (0,0,1), the equation, by an affine chane

of co-ordinates, has the form:-

(2.22) y' Ay + g(y) y = (y1 ,Y 2,y 3)

where

S0 0

A = 0 X2  0 A1 > 0, 2 < 0

.0 0 0

and g'(0) = 0

Consider the cone C0  given by

C0 = (yly 2 ,y 3 ) I lyll > I(y2 ,y 3 ) ,

then let C = y + C0 . Let P(r) be the solution of (2.22) such that

y = P(0), f(r) be that with z = (0).

Lemma 2.1. There exists a neighbourhood U of (0,0,0) so that

if z,y E U and Z E Cy then 1Tl(Ip(r) - P(r))l is increasing so

long as f(r) and (r) are both in U.

Notice that (0,0,1) of (2.5) is transformed into (0,0,0) of

(2.22). For the sake of notation call the image of Wc s  also Wc s
loc oc*TaezEUbtz cs Wcs

Take z c U but z 4 clearly there is a y c U nW 1 c so that

z E CY , but since (r) - 0 as r - + ' we cannot have p(r) 0 a

I l l l - , . . . . .... . . .. .. . . . . .. . . . . . .. . . . . .



without it leaving U first, by the lemma. Transforming this state-

ment back to the original variables gives us that W = Wc s as desired.

Proof of Lemma 2.1.

Take U to be a ball of radius c > 0, so small that

fg(w) - g(w _ 61w-Wi

for w,w c U. If P(r) is the evolution operator of (2.22) then 5 can

be chosen so that

P(r) (C n U) c C
y ;(r)

for y c U so long as (r) E U; i.e. these cones are invariant under

the flow. Suppose z E Cy then z-y c C and the associated solution

f(rj - (r) satisfies the equation

(2.23) (i- P)' = A(,-p) + g(i) - g( )

and since X1 > 0, it is clear that if 6 is small the function on

the right points inward on 3C0 n U.

The solution (r) is given by the variation of constants formula.

r

(r) = e Ary + f A(r g((s))ds
0

and so,

ir  r i(r-s)I(T(r) - qp(r)) = e 1
( z - y ) + f e (s (g((s) - ( (s))ds

0

Because (s) - P(s) E C there must exist a k > 0 so that

Tr-(g((s) g('O(s))) < k l1rl(*ls) - P(s))I
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but then

A r r A (r-s)
17l(I(r) - ,(r))l e I IT(z-y) - f e kl 6 1 ( (s) - ;(s)) Ids

0

Now if we assume that ITr1 (s) - ;(s))l < k2e X
s

1(z-y)f where

A < A (otherwise we would be done) we get

(r) - ;(r)) > e (I r1(z-y) - k617l(z-y)1)

Alr
e (l-k T) 1 (z-y)I

If 6 is chosen small enough the lemma follows.

We can now state and prove the uniqueness theorem.

Theorem 3.3. If f satisfies (HI) and (H2) then the nonconstant solu-

tion of Theorem 3.1 is the unique one between 0 and 1.

Proof. We firstly fix some notation. From lemma 3.1 we know that for

each R, WR  is a one-dimensional curve, and so W R\(u,v) has two

connected components call these W (u,v) and W (u,v), where they are
R R0

determined by the requirement 0 E W (u,v). Let T (u,v) be the tan-
R R

gent line to WR at (u,v) and T (u,v) be the half-line of
R Ro 1

T (u,v)\{O} that is tangent to W (u,v), define T (u,v) similarly.R R R

It is clear that the evolution map of the equation maps W (u(R),v(R))
iR

to W i(u(r),v(r)) i = 0,1 if (u(r),v(r)) is a solution. A similar
r

i
statement is true for the action of the tangent equation on TR.

R£

mwm mm mmm um mm
-, .L _E ,-LL
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Now let (u(r),v(r)) be a solution of (2.5 '

v(r) < 0 for r < R, some R, and 6(r) Lt t,, 1i

solution of the angular variational equation (2.11).

then TR(U(R),v(R)) is the upper half of T RU<),v(;

because T1(0,0) points down and if 6(R) > C it mit

1- --
the horizontal at least once if T (u() ,v(R)) were :oi-t n,:

R

would have passed through the horizontal twice. From th.- "

in Theorem 2.2 it cannot rotate through more than an an-it c

but passing through the horizontal twice would recuire this.

Now suppose (u1(r),vl(r)) and (u2(r),v 2(r)) are two :;ei*.,"

of the problem. Let u (0) < u 2(0) and suppose there is no soluti-.

u(r) with u1(0) < u(O) < u 2(0) nor any with u(O) < u l(), t!r.n

either

(2.24) (u (R),v (R)) E W (u (R),v (R))1 1 R 2 2

or

(2.25) (ul(R),V (R)) E WO(u 2 (R),v 2 (R))

for all R sufficiently small. (2.25) is impossible by comparison

with equation (2.18). If (2.24) holds then since T(u 2(R),v 2(R)) is

1
bounded away from the horizontal and T (u (R),v (R)) points up, for

R 2 2
1

R sufficiently small there is a point (u,v) c W (U (R),v (R)) with
R 2 '

v > 0 and u > u (R). Buth then since T 0(u (R),v (R)) is pointino
1 R 1 1

down there must exist another point (u3 ,v3) with the properties

(1) v3 < 0 and (2) T (u 3 ,v 3 ) is the lower half of T(u3 ,v 3) whi-:.

is a contradiction to the Remark on p). 23.

_________ WA____



Remark: We could have proved uniqueness by reference to the full

PDE (1.3), the spectral properties of Theorem 2.2 mean that if there

was more than one solution their Morse indices would not have added u;

correctly. What we have done is a geometric version of the same idCa

and is done without departure from the ODE.

I _ _ _ _ _ _ _ _ _ _ _ _ _ _J ii



Chapter 3

Generalities

I. LOCAL EXISTENCE AND UNIQUENESS

In this chapter we compile the appropriate generalities about

systems of reaction - diffusion equations, everything is standard

material except for section IV. Apart from some reversion to the

scalar case in section II we will consider the system of equations

(1 .1).

One of the basic spaces (1.1) can be solved in is:

= n m

B = {u : JR n _ Iu is bounded and uniformly continuous)

where

lliB = HlulK

To be more precise, given u(x) E B there is a unique solution

u(x,t) which is a distributional solution of (1.1) with u(x,t) E B

for sufficiently small t and u(x,O) = u(x).

The fundamental solution of the heat equation is

(3.1) K(x,t) = (4Wrt) -n/2 exp[- xj2/4t]

It is a standard matter to show that u(x,t) E C([O,T],B) (the con-

tinuous functions from [0,T] into B) is a solution to (1.1) with

u(x,0) = u(x) if and only if each component ui(x,t) satisfies the

integral equation

t
(3.2) u(x,t) = K(x,t)*ui(x,t) + f K(x,t-s)*fi(u(x,s))ds

0

32

I
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where * denotes convolution with respect to x (it is here that the

boundedness of functions in B enters).

If (3.2) is considered as a system of equations (i =1 ..1,m),

the right hand side is a mapping on C([O,T],B). A contraction mappina

argument then shows that for small enough T (3.2) can be solved for

any u(x) E B, and furthermore T only depends on Iu'!B . An appli-

cation of the Gronwall Inequality shows that the solution is unique and

continuous jointly in time and initial data. For details of these

arguments see, for instance, Rauch and Smoller [1].

To sum this up, the solutions define a local semiflow on B, i.e.

if we define

S(t)u(x) = u(x,t)

then S is a local semiflow on B.

II. COMPARISON PRINCIPES

To obtain qualitative information about solutions of a parabolic

equation the main tool is usually the maximum principle. We collect

here some of the corollaries of the maximum principle that give order

relations between the solutions of a reaction - diffusion equation.

The first three principles refer only to the scalar equation, so

we assume u E 1R . Any functions u(x,t) mentioned are continuous on

some interval [0,T] into B, in the obvious fashion. Since smooth

functions are dense in B, we can assume u(x,t) is smooth when

proving inequalities such as those below, as the general case then

follows by taking limits.

7__ ~.*A..~"f

- - J*R.
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Principle 3.1. Suppose f(D) = C and

(3.3) U - f(u)
4t

in some domain 2 x [0,T] where n. Asu,e : .,. ..

(3.4) u(x,t) 0 on [,Ti

(3.5) u(xO) < 0

then

(3.6) u(x,t) < 0 on [0,TJ

Principle 3.2. Suppose

3u _v

(3.7) AU - f(u) > - - v - f(v)t 3- t

in some domain x 10,T] where 2 c IRn. Assume further

(3.8) u(x,t) > v(x,t) on J- x [0,T]

(3.9) u(x,0) > v(x,0)

then

(3.10) u(x,t) > v(x,t) on - x (0,T]

Proof of Principles 3.1 and 3.2. 3.1 clearly follows from 3.2 b'

setting v(x,t) = 0 and reversing the inequalities. 3.2 follows ft ,:

the standard linear maximum principle since, by the mean value t!oc'r-

f(u) - f(v) = f' (n)(u-v) and so (3.7) becomes

-- (u-v) - A(u-v) - f'(r)(u-v) > 0

This is the standard argument, see Protter and Weinberer ]

T". *,V _Mpl'



A function u(x,t) that satisfies (3.10), for an,,. solutions

v(x,t) that satisfy (3.8) and (3.9) is called a subsolution. it .

obvious that if ful ... ,u nI are subsolutions then

u(x,t) Max u.(x,t)
i=l,. . .,nI

is also a subsolution. The analogous statements hold for super-

solutions.

Principl1e 3.3. Suppose we have k solutions of the ineauality

(3.11) Au + f(u) > 0

k
say u (x),...,u Wx on Q1'*... r P Suppose IR U 7 where

11k I *i=l 1

C'" c Int(2. and I n for all i,j. Define

1 -1

k1
and suppose there is a neighbourhood U of U 30. so that in U

i=l1

uWx M nax u. X)

then if u~x,t) is the solution of

(31)u = 6U + f~u)

u(x,O) = uWx

it is nondecreasing in t and if lrn u(x,t) =v(x) , v(x) is the

minimal solution (if such exists) of

AV + f(V) =0

(3.13)

VWx > uWx

i 7.



Proof. Let v(x,t) - u(x) then v(x ,t) is a subsolution for (3.12).

So u(x,h) > u(x,O) , if u(x,t) satisfies (3.12). Consider the turc-

tion w(x,t) = u(x,t+h), since it satisfies

t=-w + f(w) I

by Principle 3.2 u(x~t+h) > u(x,t) . u(x,t) is therefore nondecrea~-c

ing and if there is a solution w(x) to (3.13) we obviously must have

u(x,t) < w(x) and so lim u(x,t) = v(x) exists and v(x) < w(x). it

remains only to show that v(x' satisfies v + f(v) =0.

We have
t

u(x,t+Tr) = K(x,t)*u(x,-) + jK(x,t..s)*f(U(X,S+T))ds

0

By repeated applications of the dominated convergence theorem

t
v(x) = im u(x,t+T) = K(x,t)*vtx) + S K(x,t-s)*f(v(x))ds

T-*'m0

Since v(x) is then smooth it must satisfy

Vt =AV--f (V)

But v is independent of t, so v(x) satisfies Av + f(v) =0.

This proof is essentially that of Aronson and Weinberger's5

proposition 2.2 [2].

We now return to the full syst em of equations (1.1) and define

invariant rectangles for the semiflo~w S(t) on B. Suppose

m

P 7 i [a.,b.] is a rectangle in IR . P is an invariant rectangle
i=l 1

if the set

"3 U-7-7-
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M(P) I u(x) (Ul(x) . .u (x)) a. u. (x) < b , i = 1 mm i- 1 - I

and all x : }

is positively invariant (see definition 1.4). Weinberger [11 and

Chueh, Conley and Smoller [1] have given sufficient conditions for a
I

rectangle to be invariant, we give these as Principle 4.

m
Principle 3.4. A rectanqle P = [a.,b ] is invariant for the1 1i=l

semiflow of (1.1) if, for all i = 1,...,n

f.(u) < 0 if u. = b.
1 - 1 1

f.(u) > 0 if u. = a.1 - 1 1

Remark: The condition says that f does not point out on the

boundary of D.

III. GLOBAL EXISTENCE AND SMOOTHING

For equation (1.1) it was remarked in section I that the local

time of existence depends only on jlull. and so an a priori estimate

on lu(x,t) 11. will suffice to prove global existence. If there is an

invariant rectangle P then there is a constant C, so that if

U M(x) M(P) then l1u(x,t) 1fl < C. This means that S(t) induces a

global semiflow on an invariant rectangle. From now, we shall assume

that (1.1) admits an appropriate invariant rectangle and the semiflow

will be restricted to it.

'Ah .... ,k



Now suppose u(x,t) is a smooth solution of Ki.1' -

u(x,O) E M(P) on a set D = x [0,T] or ,

closed. Let D C int D with D closed, a standard

supivu I in terms of suplul and information from ti ...
D1 D

the author does not know of a proof in the literature, .>ort

Schauder estimates which are unnecessar here, we ketc7, a

Theorem 3.1. Under these assumptions, there is a constani .

the distance between D1  and D and P, say C, so that

(3.14) sup7uj < C supju,
1 DD

where Iul = I Vui etc.

Proof. Let t(x,t) be a smooth cut off function so that

if (x,t) c D 1  (x,t) = 1

if (x,t) c Dc  C(x,t) = 0

and (x,t) E [0,1] always. Consider the system of eauations

k k k

(3.15) v= g (x,t)t

on D, where gk is smooth and let vk  be a smooth solution. Set

= C IVV1
2 + x V 2

k k

Let K be a constant (bigger than 1) that satisfies

K > JD'Clj

I am grateful to Professor L. C. Evans for teaching me this method, it
is also related to an estimate in Chueh, Conley and Smoller [1].

. . . . . ....... .. ... .. _ _ . . -. ... --. ::,.iJ,



where a is a multi index !i, < 2 and 1 < j < 2. At a roint of

maximum interior to D we must have

w - Aw > 0t _

computing and estimating, we get

0 2 <2 k,2 2 2 - kk
0 (wt - Aw) <_ c i (6K - 2X) + 2 21 v a

k k

+ 2 4 .vkvk 2K2 2  
2 uk='

k k k

where the last two terms are arrived at by using the fact that w =
X.1

for all i. For the last term

CV v Vk.v = (vvk )(vk V) < + a(v
k ) 2V 1

- 2a 2

for any a > 0, so let a = 4, then

0 < C2 1 I k12 (14K 2 _ A) + 242X I vkgk + 2;4 1 Vvk.Vgk

k k k

k 2+ 16XK (v)
k

Now let g k(x,t) = f k(u(x,t)) and vk = uk , since u(x,t) M(P)

for all t > 0 and f is smooth it can be seen that there are con-

stants L1  and L2  so that

k[  ufk  <- L1  1 u k 12k 2

Vu 'Vf(u(xt)) < u 2

k k -1 2 i th b

k k

Plugging these into the above
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0 < Ivu k2((14 + 2L2)K 2 _ X)) + (2KL 1 + 16\K)Y Uk2

k k

Taking X large enough the quantity

2KL1 + 16XK

X - (14+2L2 )K
2

is positive and so

C2 i L u2 < c Iu 2

k 
k

This is true at a point of maximum, so throughout D

2 1 Vu'j2 + X lUk 12 < (c+X) sup I jUk 12

k k D k

but in D = 1 and (3.14) follows.

As an application we can set D = IRn x [0,o) and

D = R x (t 0,) . If u(x,t) is a smooth solution of (1.1) we get a

bound, on supIVu(x,t)l for all t > t0  since u(x,t) stays in M.

IR
n

Suppose we replace the sup-norm topology on B with the compact-

open topology, then this says that M • [t,-) is precompact in M for

each positive t, where M consists of smooth functions in M. Since

cl (M) M and

Cl0(M) * [t,0) c 0 (M c[t,-)) c (M [t,-))

ZM3 - .Rr k M
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where cl0 and cl refer to the sup norm and compact open topologies

respectively, M - [t,-) is precompact in M, with the compact-open

topology.

To complete this picture we must show that the topology can be

switched without destroying the semiflow property. The only property

to be proved is continuity, this will be done in the next section.

IV. CONTINUITY IN THE COMPACT-OPEN TOPOLOGY

Given an invariant rectangle P for the semiflow S(t) on B,

when referring to the associated positively invariant set M(P) C B we

shall assume it is endowed with the compact-open topology.

In this section we show that if P is an invariant rectangle the

mapping

S : [0,-) x M(P) - M(P)

given by S(t)u(x) = u(x,t) is continuous. We could not replace the

topology on all of B and get a continuous mapping. The a priori

bound implicit in M is essential.

n
Suppose G = {G.I is a sequence of compact subsets of R so

that In = U. G. then the following quantity is a metric on M
i=l1

dG (u,v) I _L sup ju(x) - v(x)
i=0 2 xEG.

To prove continuity of S on [0,-) x M it suffices to prove

continuity of S(t) on M which is uniform with respect to t in some

_A

mw I
* - ~ .,,.-.~,.. - .,



compact interval. This follows from the fact that for fixt.,4.

S(t)u is continuous in t, from section 1.

We will find a sequence of compact sets G =G 3o that 1

0 < t < T we have an estimate of the form

(3.16) dG (u(x,t),v(x,t)) < c(T,N)dG (u(x),v(x)) + (T,)

with N a positive integer and

6(T,N) - 0 as N - m

c(T,N) - - as N - -

Such an estimate clearly performs the desired function and we rrove it

in the following theorem.

Theorem 3.2. In the above notation S : [0,-) x M - M is continuous.

Proof. Recalling the heat kernel K(x,t) from section I, with an

abuse of notation we think of K(x,t) as an m x m diagonal matrix

with this kernel as each diagonal element

t
(3.17) u(x,t) = f K(x-y,t)u(y)dy + f f K(x-y,t-s)f(u(v,s))dvds

3Rn 0 IRn

Let A c B both be compact sets and use the notation

g(X ) jA = sup Ig(x)1 = sup Elg i cx )1
XEA xEA

Iu(x,t) - v(xt)IA < If + f K(x-y,t)EuCy) - v(yfldyiA
B Bc

t
+ f If + fC K(x-yt-s)(f(u(y,s)) - f(v(y,s)))dY( Ads

0 B B

.... . . . q . .. .. ... ..
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< u (x) - v(x) B + cE(A,B,t) +

t
f (klu(x,s) - V(x,s)l + cE(A,B,t-s))ds
0

where

c > {sup ju(x)! u(x) M

and

k > {sup ID .f(u)l 1 < i < m and u Mr
1

c(A,B,t) =f IK(x-v,tfl dy
cA

B

Now let the {G.} be concentric balls of radius R.. We use the nota-
1 1

tion G(N) for the sequence of sets {G. and d for the
i+N 1=0 G(N)

associated metric, then

(3.18) d G()(u,v) < 2 Nd G(u'v)

For each i, substitute A = G0. and B = G iNand sum over i with

the appropriate weighting.

d G(u(x,t), v(x,t)) < d G()(u,v) + c E (G.,G.i+

ti 2

+ f (k d (u(x,s), v(x,s)) + c Z -LE(G.,G. ))ds
0 G(N) i 2 iN

where s(A,B) = EA,B,T) and we have used the fact the e(A,B,t' is

increasing in t. Using (3.18)

1.
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d G(u(X,t), V(x,t)) < 2 Nd G(UV) + c(l+t) EG, +
G - G~~ i2' iN

+ k 2 N f d G(u(x,s), v(x,s))ds
0G

By Gronwail's Inequality

N k2 NT k2 NT, 1
d G(u(x,t), v(x,t)) < 2 e d G(u,v) + c(1+T)e Z UG ,G N

In the notation of (3.16) c(T,N) = 2 Ne k2NTand 6(T,N)

c(1+T)e k TE-- E(G.,G.) It remains to show that as N -

i 2' 1 iA-N

6(T,N) - 0 for fixed T.

F-(GF i+N - TrT) n/ 2 f sup exp(- Ix-yi2 /4T)dy
Gc xEG

i+N

recalling that G.i is a ball of radius R.

G 1

= (4irT) -n2fj exp(- (-R) /4T)d

= (41TT) -n2 (q+R.i) M-.exp(-q 2/4T)dq
R i+-R 1

It is a simple matter to obtain estimates of the form

fjOqe qdq < p(R)e-c

R

-~ - -- 7- I



where p(R) is a Polynomial in R of order s - 1 (unless s =1,

then it is of order 1). These are straightforward if s =0.1, for

larger s one integrates by parts and reduces to one of these cases.

From this we see that

E(G.,G. ) < R.M- p(R -R )expC- 4TR +N
1 i+N - i+N i 4

i
We now choose R. = 1 3], then

1 j=0I

Ri=3 1 Rl 3 (3 -1)

2 +N 1

so

EGG. < i+l ml1 i+l N_ 3 C 3 Nl)~
1-GI i+N~ ) < -31) p(3 (3 -l))exp(- 8T

We must show that

N-

no matter which order the limits are taken in, since

6(T,N) =C(+T)e2NT 2 e(ir 14-N

this will finish the theorem. For some constants c.(T) > 0

ek2 NT eGO <c3(i+l) (m-l) 3(i+N+l) (r-2) exp -+1 ( Nl)+c2N
i+N - 123

ex= l 3((i+l)(m-l) +(i+N+)(m-2)) +c 2(-3j~ N3-) N

A6AA - 777, 77 i-



If m pi 1, and if in 1 it is even simpler. Dividir tz

in parentheses by 3 i+N+1 we reach the desired conclusio.

7;I-



Chapter 4

Spherically Symmetric Solutions

I. MAIN CONTINUATION ARGUMENT

The construcion given in section II will allow ut. to pass struc-

ture between different invariant subflows of the semiflow for the

reaction - diffusion equation. These subflows will be related to

symmetries of the equation, whence their invariance. In particular we

shall pass from one space dimensional behaviour to spherically symet-

ric behaviour.

We firstly express this in the abstract setting of a compact semi-

flow on a fiber bundle.

Definition 4.1. A semiflow S(t) on a space Y will be called compact

if Y [ ft,-) is precompact in Y for every t > 0.

We shall consider a compact semiflow on a fiber bundle but the

structure to be continued will lie entirely within a certain subspace.

For the purpose of continuation the relevant features of the subspace

are given by the following definition.

Definition 4.2. Suppose n : E - A is a fiber bundle. A subspace

F c E is said to be continuous if (1) F is closed and (2) 7 F is

an open map.

Note that any fiber bundle is a continuous subspace of itself. If
-i

E - (M), continuation involves deducing behaviour in the fibers

E from that in E o, if X is close to X0. If AX = El n A, that

A is continuous guarantees that this can be done from A to A X

47
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The pieces of structure we shall continue are isolated invariant sct:-

and attractors (see Conley [I) and Yung [l]).

Let S(t) be a semiflow on Y and N be any closed subset of Y,

define the closed set

0
N = {y E N : y [0,c) C N}

A set I c y is an isolated invariant set if I c int(N) for some

closed set N and w(N 0 ) = I, N is then called an isolatinq neiqh-

bourhood for I. An isolated invariant set I is an attractor if it

possesses an isolating neighbourhood N with the property that

w(N) = I, such an N is called an attracting neighbourhood.

It is the property of being an isolating (or attracting) neigh-

bourhood that is stable under perturbation not that of being an iso-

lated invariant set or an attractor. If N is an isolating neighbour-

hood we call the set it isolates I(N). Even though N remains an

isolating neighbourhood for nearby semiflows, I(N) may change.

Now suppose we have a compact semiflow S(t) on the total space

E of a fiber bundle and that each fiber is invariant. If F c E is

invariant, that it be a closed subspace of E means the induced semi-

flow on F is also compact. In the following theorem, N is a closed

set with non-empty interior.

Theorem 4.1. Suppose A is a continuous invariant subspace of a

bundle, which carries a compact semiflow, if Nx = N n A is an iso-
0 0

lating (attracting) neighbourhood in A then N, = N n A is a non-

0
empty isolating (attracting) neighbourhood in A x for A sufficiently

close to X0 .

..... . ..
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Proof. If N is an isolating neighbourhood then there exists a
0

closed set K and an open set V both in A. such that
Xo 0 A.0

w(N 0) c Int(K0 ) c y0 c N

0 0 0 0

But then there is a closed K c E with int(K) 4 and an oren set

V c E so that K K n A and V V , A so that K V - N
X0 X0 X00

and

(4.1) w(NA )c Int(K n A c V n A N
0 X 0 0

-l
Let N = N n A, since A is continuous N n (P) is non-emptyA A

-i1

for A sufficiently close to A0. Now N A n 7 (0) = N 0 Al so it

suffices to show that

(4.2) w(N0 n -1(B)) c Int(K n A)
A

for some neighbourhood B c A of X0'

Suppose (4.2) were not true then there would be a decreasing

sequence of closed sets B so that () B = X0 and (4.2) were falsen n 0
0-1

for B . For each n, pick a y in w(N n 1 (Bn))
n n A n

0 -i
n(NA\Int(K n A)). Since the semiflow is compact on A, w(NA n T (BI)

is compact and since A is closed in E, w(N 0 n 7- (Bl))
A1

n(NA\Int(K n A)) is also compact. But then the set {yn } has a limit

-i
point y and by the product structure y E 7 (A0 ) and clearly also

YE N A n Int(K n A) which implies y E NA \Int(K nA AI ). But

y 6 w(N0 n 7-I(B)) n A0. It is not hard to see that w(N0 n -I(B)) =
A X0' A

U (N 0 it- 1 ()) and so y E w(N 0 n iT ))= ( N  but this is a
XB A A 00

cnB t0i contradiction to (4.1).

i -1
-- |.



The same argument proves the theorem for attractn:.

hoods, one only need go through the proof removin.7 all t*:

of 0.

A much stronger statement is really true -er , -a.mvt..'

generalized Morse index (see Cmnley [l], Yunu [I]) shoul2 .r'-.

through the fibers of such a subspace but that the above two .

structure continue is sufficient for our purposes.

II. GENERAL APPLICATION

In this section we will construct a product space (i.e. a triv=.1

fiber bundle) which portrays both the spherically symmetric behaviour

in (1.1) and its one-dimensional behaviour and further, allows conti:.u-

ation between the two.

We start with the product space E = M x 10,1] and extend the

semiflow on M by leaving the second co-ordinate fixed. We will

describe the continuous subspace A, that is of interest, by its

fibers.

If the underlying spatial domain in (1.1) is JRn  then fix a co-

ordinate system x = (x ,...,x ) on it. We describe A, A M
n

in two different cases.

A < 1 u c A if u is spherically symmetric with the

origin considered as being at (iC-, 0'....0)

1-



= 1 u r A. if u only depends on xI.

Note that as ;,. 1 1, the origin approaches --- alonc the

x -axis and so the functions in A. tend to those in AI , t;i' i

what makes A a continuous subspace and so is the essential cont:.t 

Proposition 4.1. All the functions in A are functions of essentiaIlv

one indepen*dent variable, if X < I this is the radial variatle, if

=1 it is xl. For each < 1 let

x r

where r is the radial distance from the origin at _,...,O).

If X = 1 let x xI. Considered as a function of x, for every

we have that x x x I on the x -axis. Given any u(x) A, it is

clear that it can be seen as a function of x so we often write u(x)

as u(x ).

Proposition 4.1. A, as described above, is a continuous invariant

subspace of M x [0,1] - [0,1].

Proof. A is obviously invariant since A is invariant under rigid

motions. We need to show that 7jA : A - [0,1] is an open map and

that A is closed.

To show that 7 A is an open map, an open set C around u has

the following lengthy description

C {(v,X) : Iv'x) - u(x)1 < E for x c K, K compact, v c A

X E I where I c [0,1] is open}.

, - - •p. -
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If u E A it must be shown that C intersects all other fibers A.A0

for X sufficiently close to * This is clearly only a problem if

A0 =1. Suppose u , A1 , then u is a function of x I alone, say

u =ux) . Then consider v A given b,, v (x u(x i

x > - "Each vA and u agree on the half line x > SO

it is clear that for a given compact set K, can be chosen suffi-

ciently close to 1 so that v (x) - u(x)j < c for x t K.

To show that A is closed, again we need only worry about

u (x) c A with Xn 1. We must show that there is a u(x) !- A
n

such that u (x) - u(x) uniformly on compact sets if un (x) converges

in M. Restricting each u n(x) to the x -axis we get a sequence of

functions u 1(xI ) that converge to a function u (xl) we define
n 11

U(X) = u (x ) , then it is obvious by the nature of A that
n

u (x) - u(x) in this topology. This completes the proof.n

This seemingly innocent and simple result has fairly strong conse-

quences, for it says that attractors will continue from A to Ax

where A < 1. In A1 we have effectively one-dimensional behaviour,

while in A for A < 1 we have spherically symmetric behaviour. So

if there is an attractor for the one-dimensional equation we automati-

cally obtain a corresponding attractor for the spherically symmetric

equation. In other words, some stable behaviour in the one-dimensional

case yields associated stable behaviour for the spherically symmetric

case.
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There is, however, a drawback as we have on A1 the compact-open

topology, which is quite inappropriate for discussing stability. The

remedy for this is actually restricting the discussion to another

invariant subspace of A in which stable behaviour does occur. As we

shall see in the next section, in the application to the bistable equa-

tion the topology restricted to the invariant subspace will be close

enough to the sup-norm topology to render an attractor.

So, if we have an attractor for the one-dimensional equation the

above procedure pulls one in from "infinity" for the spherically sym-

metric equation but it tells us nothing about the structure of the

attractor except that it is the maximal invariant set in some given

neighbourhood. For a particular situation the problem then is to

describe this maximal invariant set, for it contains the asymptotic

information about spherical propagation. In the next section we shall

do this analysis for our standing example, the bistable equation.

III. SPECIFIC APPLICATION

We consider again the bistable equation

(4.3) ut = Au + f(u)

where u E P and f satisfies (Hl). We base the set M on the tri-

vial rectangle P = [0,1], which is easily seen to be invariant. Con-

sequently (4.3) generates a global compact semiflow on M which,

collecting the pieces, is given by

M u :Rn ] R u(x) is uniformly continuous and 0 < u(x) < i}

7W
--' ' d . .. . . .... .. . . . . . . . ., ." I l II I -



The construction of section II of this cha-:-or- autc-7.: -.

supplies us with the continuous subspace Ak of M Ql

remarked at the end of section 11 to find an attraictor 12:

restzrict the space further. In particular we rc:eta

U E A A be nonincreasing in x A, which is an invarian~t ci

Proposition 4.1 was not proved for this A but th- proof

only trivial modif icat"ions to cover this case, so is2 a otru

subspace of M x [0,1].

For the one-di-nensional version of (4.3)

(4.4) ut u xx+ f(u)

we know there is a travelling wave u(x-ct) with u(--) =1, u(+-)

and c > 0, which is monotone decreasing and so lies in A,. eax

of the topology in A 1this solution appears as a compact curve in A1

running from 0 to 1,

Figure 4.1

let us call this compact set W.

In this section we shall apply a theorem that is proved in chapter

5 which says that W is an attractor in A Iand analyse its ccntinua-

tion toA

Opq ~



Theorem 4.3. With respect to the space AI, u - c is ar isolat-;

invariant set, u - 1 and the set W are both attractors. "Ior.IOver,

for any E < a and any a JR the set

(4.5) U(a,r) = {u(x I ) E A u(a) < E:

is an isolating neighbourhood. There exists a < 1 so that for anWi

b c iR and 1 > 6 >6

(4.6) V(b,5) = {u(x I ) c A I u(b) _

is an attracting neighbourhood of u 1 1. Finally if

W c U(a,c) L V(b,6)

then U u V is an attracting neighbourhood of W.

(Notation: as above, the dependencies of U and V will some-

times be suppressed.)

Proof. This follows from Lemmas 5.1, 5.2 and Theorem 5.2 in chapter 5,

section 2.

Let us now plug this information into A and analyse the continuc,.

sets. Consider the following three subsets of M x [0,11

U(a,e) = {(u(x),X) u(a,0, .... 0) < E, c [0,1)

V(b,6) = {(u(x),X) I u(b,0,...,0) > 6, X C [0,i]}

N=UoV

Then U n A, = U(a,c), V n A = V(b,6) and N n A =U U V. So if

a, c, b and 6 satisfy the hypotheses in Theorem 4.3 we can conclude

by Theorem 4.1 that U n A is an isolating neighbourhood, V n AX

and N n AX are attracting neighbourhoods for X sufficiently close

to 1. We can clearly write

S7W



A i U(a,E) = {u(x ) AX u(a) < c

A r V(b,6) = {u(x ) c A1  I u(b) > 6,

As long as X < 1 we are already amongst spherically symmetric func-

tions and so the above statements about U, V and N can be trans-

n
lated into ones about functions u : F IR which depend only on r.

We set

U (a,F) = {u(r) u(a) < E}

V (b,6) = {u(r) u(b) > 6)

if a and b are large enough U is an isolating neighbourhood and

V is an attracting neighbourhood, as is U u V if b - a is

sufficiently large. We assume that these conditions on a and b are

satisfied and analyse the invariant sets.

Proposition 4.2. I(V s(b,6)) = 1 if 6 is close enough to 1 and b

is sufficiently large.

Proof. One can check easily that under these circumstances one of the

comparison functions in Aronson and Weinberger [2], see our theorem 1.1,

will be less than every element of V (b,6).
s

Since the semiflow is compact and U u V is connected,s s

w(U u V ) is connected and since 0 E U , I(U ) ' 4. The usual argu-

ment then shows that w(U u Vs ) contains I(Us ), 1 and orbits

running from the former to the latter. In particular I(U ) is not an
s
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attractor, however we do have the following proposition; recall that

A0  is just the set of spherically symmetric functions which are non-

increasing in r.

Proposition 4.3. u £ 0 is an attractor in A0.

Proof. It is a standard maximum principle argument that u 1 0 is an

attractor in the sup-norm topology. Take any compact set K c IRn

which contains the origin, if functions in A0  satisfy an estimate on

K they satisfy it everywhere and so a neighbourhood in the compact

open topology is contained in a sup-norm neighbourhood which 0

attracts.

This proposition shows that I(U ) contains something other thans

just u _ 0. However we can show that the flow on I(U ) induced by
5

the semiflow of the equation is a gradient flow, that is there is a

functional V(u) which is decreasing along orbits except on constant

solutions. The functional V(u) is the standard energy functional

(4.7) V(u) = f n( 1Vu,2 - fuf(slds)dx
0

It is a standard computation to show that along orbits

d V(u(x,t)) = - 2 dx(4.8) dt

The only reason (4.7) is not used more often is that the integrals are

often unbounded. However, here we can show that I(U s H1 (n) 

__iii
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which is in the domain of V(u) and so it .

Theorem 4.4. I(U ) I (Pn )

s

Proof. We actually show much more, namely if we defin- t:.-

UT {u U u * t c U for all t ' T
S S5-

then UT  T is contained in some set zT which is close" an i

consists of functions that are exponentially decreasing. Sir-t-

I(U ) c UT T for all T > 0, elements of I(U ) are exioncntia11:

decreasing and we can then estimate the derivatives to prove the >ro: -

sition.

We will define a supersolution to the equation u(r,t) with the

following properties

(4.9) u(r,0) > c
- -mr

(4.10) lim u(rt) < C e some constants C, m > 0
t-

(4.11) u(a,t) > c for all t > 0

Suppose that these three properties can be satisfied, then the function

min{a, u(r,t)} is also a supersolution on the unbounded annulus r a.

If u E U T then u(a,t) < E for t < T and since u(r,0) = u(r) < 6

for all r

u(r,T) < min{a, u(r,T)}

TSo define Z as the set of v(r) E A0  that satisfy

v(r) < min{a, u(r,T)}



7,T
From (4.10) T~ >0 consists of exponentially decreasing functioi._-.

To define u(r,t) we use a method of Fife and McLeod's [1) from

their Lemma 4.1. Let v(x) be any solution of v x + f(v) that is

nonconstant but lim v(x) = 0, i.e. the body of the fish in Figure 3

that also satisfies v(a) > c. Set

u(r,t) = v(r.-p(t)) + cet

where c, k and p(t) are to be chosen. If p(t) > 0 for t > 0

and p(t) is bounded as t -~',c and k < 0 then 4.9 11i are

satisfied.

We only need show that u(r,t) is a supersolution if u < a and

only on the half-line [c,-) where v(c) a and v'(c) < 0. We

compute

Lu =u - u -- u - f(u) > u - u -f(u)t rr r r -t rr
(4.12)

=-p'v' + kce -t v" - f(v +- ce k

Consider two sets separately u c [0,61 and u c (6,a] where, for

constants q1andq2

fV(u) < q1< 0 for u E [0,6]

v'(r) < q2< 0 for u E (6,at]

From (4.12)

Ifu [,6 u >-v'+kcek - fv + cekt f(v)) .j

71.., -4110-
M. 7_7 -.-..



Lu > -p'v' + ekt (kc - qc)

If p'(t) > 0 then

- kt

Lu>ce (k - q)

so pick k < 0 but k > q then Lu > 0. If u c [6,a] there is a

K so that

kt
Lu > -p'q2 + ce (k- K)

so we can set

p c(k-k) ekt
q 2

since k < K and q2 < 0, p' > 0, we can then set

c (k-K) kt
p (t) = c~- e kt+ z

kq2

to get Lu > 0 for all u E [O,a]. Pick z so that p(t) > 0 for

t > 0, clearly p(t) - z as t -+ and choose c = c.

From this it follows that I(U ) consists of exponentiallys

decreasing functions and therefore these functions are in L2 (In ) . To

estimate IVu(x) for u(x) c I(U s), take 2 = {r I r > R0  and

Q' = {r I r > RI} with R0 > R1 then from Theorem 3.1 with

D = Q x [0,-) and D' = 0' x [0,-)

sup Ivul < c sup lul
D' D

and so

bpi, _MWVgt1
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sup K-ul c sup lul
2

for any u I(U). Since c depends only on R- R and ul is

exponentially decreasing it follows that 17ul is also, which proves

the theorem.

That I(U ) inherits the semiflow as a gradient flow means thats

it consists of equilibrium solutions and orbits connecting them. All

the equilibrium solutions must be ones that would satisfy the boundary

conditions in Theorem 3.1.

If we suppose that f satisfies (H2), then there is a unique non-

constant equilibrium solution satisfying u(+-) = 0 (Theorem 3.3). In

this case I(U ) consists of u E 0, this equilibrium solution, calls

it u, and orbits connecting them.

In w(U u V ) there are orbits running from I(U ) to 1. Let

u(r,t) be such an orbit, then lim u(r,t) c I(U ). If t is a large
s

enough negative number we can show that u(r,t) is exponentially

decreasing in r and u(r,t) c H 1 n ) . Pick T, a large enough

negative number so that u(r,t) E U for all t < T, then there is a

sequence u so that u * t n u(r,T) and u • t E U for alln n n n s
t

n T
t < t so u • t E Z n but then u(r,T) E r) Z and the above- n n nT0

T>O
follows as before.

in
A consequence of the fact that u(r,t) E H (Rn ) if t is large

negative is that lim u(r,t) is an equilibrium point in I(U ) and
t+-co- 2

now this limit can be considered in the L norm or the sup-norm.

sup-norm

4 A V.~7'
-. ,-- ..1-,,



Supp ose again that f satisfies (1Q) rt:icr, t:cnorb::

solution u~r,t) can approach in backward tine is U.~' .

Theorem 2.3 we know the spectrum of the linearizei rb1. :

and so we can apply the invariant mranifold thoor,,ns in rn. ..

sions. For the equation

(4.13) Ut tu + f (U)

the linearized operator around u actina on v is

(4.14) AV + f'(u)v = Lv

We consider a(L) with respect to the space L 2(R+ ) with t.i

measure r nldr, then it is standard that G(L) c: R and t*he

essential spectrum is contained in 1(--,b] where b = f'(0) annci so

b < 0 (by HI). But then from Theorem 2.3, a(L) A [0,-) consists or-

only one point X~ and X > 0. Then from Theorem 5.2.1 in Henry, r1j

there is locally at 11 a one-dimensional unstable manifold which con-

sists of all solutions that approach u in negative time.

From this we see that there are only two solutions leaving U,

one must go to 0 and the other to 1. So if f satisfies (H-2) we

have a complete description of the spherical attractor W , ictori-

ally.

1

U

Figure 4.2

~ ~b ~ Ile



Chapter 5

Spherically Symmetric Solutions in a Movino Frame

I. EXTENSION OF CONTINUATION ARGUMENT

The space A c M x [0,1] of chapter 4, section II inherited it.-

semiflow from M x [0.11 which comes from the equation in cuestion.

In this chapter we endow A with a family of semiflows that do not

leave the fibers invariant. Studying the behaviour in A 1 and its

relationship to the rest of these semiflows will oive much fi:.<r i f.

mation about the propagating solutions. We will not present this

application until section III of this chapter, but the construction of

the semiflow should serve as motivation for the generality of the

theorems and propositions in section II. The statements in this section

are to be understood in the context of a general system of reaction -

diffusion equations, but the remainder of the chapter is exclusively

about the bistable equation (1.3) where f satisfies (Hl).

Let us call the basic semiflow on M, S(t). We shall define a

semiflow, called H(t), on the space A x [0,-). Firstly we define a

translation map on A,

T : IR x A -A

by the formula (recall A c M x [0,1])

(5.1) T(a, u(x I ... txn),X) = (U(x 1 +a, x 2 ,...,x n ),X')

where

a +(/I )

(5.2) A' =
Y + a + /l-X

63



It is clear that if u(xl ...,xn) c A, then u(x +a, x .  ) A%,,
1 n In

where >.' is given by (5.2), so T is well defined. Since transla-

tion is continuous on N and X' is a continuous function of ", and

a, from inspection of (5.2), T : x x A- A is continuous. Intu-

itively T translates functions in the x direction and moves thcm

over to the appropriate fiber. Notice, from (5.2) that A1 is

invariant under T, as it should be.

For c c [0,-), we use T to define a semiflow H (t) on A.
c

Let (u(x),),) E A, define

(5.3) H (t) (u(x) ,X) = T(ct) (S(t)u(x),],)
c

If c > 0, as t - -, H c(t) pushes all of A onto A1 , intuitively

it pushes the origin out to --. Consequently the asymptotic analysis

for this semiflow will depend on its behaviour in AI . H c(t) gives

the evolution of the equation but viewed while moving out in a radial

direction with speed c. Restricted to A1 , the semiflow is that of

the one-dimensional equation in a moving co-ordinate frame, so we will

see how the asymptotic behaviour of the spherical solutions is deter-

mined by the one-dimensional equation at different speeds.

For each t > 0, define H(t) on A x [0,-) by

H(t) ((u,X) ,c) = (H (t) (u,X) ,c)
c

It is clear that H defines a semiflow on A x [0,-) that contains

H (t) by restricting to A x fc}.c

We must turn now to analysing the asymptotic behaviour of the one-

dimensional bistable equation in various moving co-ordinate frames.

ILL ..
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II. ATTRACTOR IN ONE DIMENSIONL CASE

For the standing example we assume again that f satisfies (HI)

(see chapter 1). In A1 there are functions of a single variable,

call it , which are nonincreasing in and stay between 0 and 1.

The semiflow H (t) when restricted to A 1 is that of the equationc1

(5.4) ut = u +cu + f(u)

where = Xl-ct, so this agrees with previous notation when c = 0.

The set W is the union of 0, 1 and all translates of the

travelling wave, which is invariant under each of the semiflows HC (t).

The main goal of this section is to prove that W is an attractor for

c c [0,c ], some c > c, relative to A1 .

The strongest stability results for the travelling wave are due to

Fife and McLeod [1]. Specialising some of their results to the present

case reads as follows.

Theorem 5.1. (Fife and McLeod). If f satisfies (Hl) and

0 < u(x) < 1 is uniformly continuous, x E R , and satisfies

lim inf u(x) > a and lim sup u(x) < a
X-- X-+M

then there is a constant x0 such that

lim JIu(x,t) - U1 (X - ct + x0 ) JIM= 0
t-).W

where ul( ) is the one-dimensional travelling wave. Further, the

limit is uniform over a sup-norm neighbourhood of uI.

~~ I



This could be described as uniform asymptotic staLilt:

travelling wave. Fife and McLeod actually rrove a mun stror: .

namely exponential stability, but we shall not use this.

Before proving that W is an attractor, the local d'nari:a]

perties of the constant solutions u - 0 and u - 1 must Le

In the topology of A a closed neighbourhood of , i.e.e.

with non-empty interior containing 0, is a set which depends or .

compact set K and a positive function g( ) defined on K. Suc. a

set is then defined as (recalling A c m)

U K,g) - {u E A1  u( ) < g(C) for E K"

A neighbourhood of 1 is given similarly

V(K,g) = {v E A1 I v( ) > g( ) for C E K}

If K = {a}, then we write U(a,E) and V(a,E) where £ = g(a),

this is consistent with the notation of chapter 4.

Throughout this chapter we shall apply the comparison principles

of chapter 3, section II to the equation (5.4), it is trivial to exte:o

each one to cover this case.

Lemma 5.1. If c < a, for any a, in the c-semiflow on A1 ,

u E 0 is an

(A) isolated invariant set if c > c > 0

(B) attractor if c > c

and U(a,e) is an isolating (in case (A)) and attracting (in case (B)

neighbourhood.



Proof. To deal with Case (A) define

U 0(a,c) = {u c U(a,c) u- [0,-) U(a,F)
c c

where "- " refers to the action of the c-semiflow. From chapter 3,c

it suffices to show that w (U 0(a,)) = {0}, where w refers to thei
c c c

e-limit set in the c-semiflow. This will follow if we can show that

given any neighbourhood U of 0 there is a T so that

U (a,E)- t c U for all t > T. By Comparison Principle II it is
C c

obviously adequate to find a solution to (5.4) so that if

v() E U 0(a,s) then
c

v(&) < u(C,0)

and u(U,t) - 0 in A I.

0From theorem 5.1, if c < c, then v( ) E U (a,E) implies thatc

lim v(C) < a. So we need only construct a solution with u( ,0) -

if < a and u( ,0) > E if C > a.

Transforming (5.4) into a system yields

w' = z
(5.5)

Z' = -cz - f(w)

If c = 0, the phase portrait is in Figure 2.1, for c > 0 it is

A

1% -V .b

A~~~- ----
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Figure 5.1

The important fact here is that for an~y 0 < E < the solution with

w(0) = c and z(0) =0 must cross the line w = in the lower half

plane, let d be the point that gives w~d) = a and ztc) < 0. Now

define u(U) by

a if & < a + d

U(R) = L~(&-a) ifa+ d < <a

C if E .a

Then u(c) satisfies the hypotheses of Comparison Principle III and so

clearly u(&,t) -0 as t - - uniformly on comipact sets. But also if

& a, u( ,0) = u(t) = a and u( ,0) > c if >a. So u(&,t) per-

forms the desired function.

Now suppose c > c, for case (B), to show 0 is an attractor we

need w (U) -(01. As before we construct u( ) so that v( ) c U

implies v(P.) < u(&), and u( ,t) -*0 in Al. But by theorem 5.1
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any function in A1 which satisfies (i) < lim u(:) < A and (ii)
X1+_

u(,) = 1 if $ < a (of which there are obviously many) will have

u( ,t) - 0 in A1 , since such a function will obviously majorise U,

the Lemma is proved.

Lemma 5.2. There is a c > c so that u 1, in tho, c-semiflow

on A1, is an

(A) attractor if 0 < c < c

(B) isolated invariant set if c > c > c

and if 1 > 6 > a then, for any b, V(b,6) is an isolating neighbour-

hood in case (A). For each c in (B), there is a 6 so that V(b,6)

is an attracting neighbourhood, for any b.

Proof. The proof is very similar to that of Lemma 5.1. In case (A) a

function u(&) below everything in V(b,6) can easily be found if

6 > a and by Theorem 5.1 u(&,t) 1 in A1 .

For case (B), by Theorem 5.1, V0 consists of functions v(E)
c

which satisfy v(E) > a for all i. If c is not too much bigger

than c the unstable manifold of (1,0) intersects the line w =

in the lower half-plane for the system (5.5) with c < c < c

A



Figure 5.2

So for each c, c < c < c there is a 6 6(c) such that if

(w(&),z(C)) satisfies w(O) = 6, z(O) = 0 then there exists d 0

so that w(d) = a and z(d) < 0. Now define j(D) by

6 if<a-d

u(E) w( - (a-d)) a' > > a - d

Iif >_

u(M satisfies the hypotheses of Comparison Principle III and so

u(U,t) -~ 1 in A1  But also if v(U) E V 0(b,S) then v(s) < u,-)

This completes the proof.

Jo
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Remark: The conditions under which Lemma 5.2 gives an isolating

neighbourhood of u E 1 are a little cumbersome, but the followinq

three simple points will help.

(1) If V(b,6) is an isolating neighbourhood for a given c

then it is for all c' which satisfy c < c' < C.

(2) If V(b,6) is an isolating neighbourhood for c > C, then

so is V(b,6') if 6' satisfies 1 > 6' > 6.

(3) If the solution to (5.5) with z(O) = 0, w(O) = 6 crosses

the line u = a in the lower half-plane then V(b,6) is an isolating

neighbourhood for the c-semiflow.

Before proving that W is an attractor we must consider some

slightly more exotic neighbourhoods of 0 and 1. For each c E [0,c ,

where c is the same as in Lemma 5.2, and each E < a sufficiently

close to a the solution of (5.5) with w(0) = E and z(0) = 0 must

cross the w-axis between a and 1 in backward time. Let d < 0 be

the largest number such that z(d) = 0 and set 6 = w(d). Let

K = [a,a-d] and ga( ) = w(C - (a-d)) with domain K. Suppose
a a

e-d < a, then we will use the sets U c(K a,g ) and V c(K e,ge ) given

by

U (K a,g) = {u E A1  u(&) < w(E - (a-d)) for a < E < a-d}

V c(K ,ge ) = {u E A u(&) > w(E - (e-d)) for e < E < e-d}

The picture is

f*
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U

1_

iS

e e-d a ad

Figure 5.3

U (K a g) consists of functions below the right hand curve and

V (Ke g) of those above the left hand curve.

For each c c [O,c ] these sets are isolating neighbourhoods of

0 and 1 respectively as they are contained in sets of the form found

in Lemmas 5.1 and 5.2. Namely, U c(Ka ga) c U(a-d,c) and

V (Ke g) c V(e,S), the fact that w exists implies that 5 is close
C e

enough to 1 for V(e,6) to be an isolating neighbourhood by remark

(3) after Lemma 5.2. The crucial property of these sets is that they

give us a positively invariant neighbourhood of W.

Lemma 5.3. For any 0 < s < s and any c E [0,c 3, if e-d < a

then the set

U c(K a g a ) U V c(Ke ige)

is positively invariant in the c-semiflow.

Proof. Let u() z U c(K a# ga ) then we must show that

u(&,t) c U c(K ag a U V c(Ke" g) for all positive t. So there are two

things to prove:

"AAA
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(1) If u(C,T) E U c(K a ga but u(C,t) U c(Ka,ga) for t ' 7
but close to T then u(C,T) V c(K e,g ) and (2) the same as (1) with

the roles of U and V reversed. The proofs of (1) and (2) are,C c

not surprisingly, almost identical, so we only prove (1).

Now suppose u(E,t) is a solution of (5.3) with u( ,T) U (K a'qa-

Since qa on Ka is a solution of (5.3) itself then u(Ft) E U (K a'g )

for all t < T unless, by comparison principle I, u(,t) c U c(K aga

for T < t < T0 and u(,T 0 ) = g ( ) for c ;Ka, i.e. = a or

= a-d. Since u c A1 is nonincreasing, if u(a,T 0 ) = a (a) = we

have u(,T 0 ) c V (K e, g).

Suppose u(a-d,T 0 ) = w(0) = E then the following inequality holds

u (a-d,T 0 ) + cu (a-d,T0 ) + f(u(a-d,T0 < W (0) + cw (0) + f(w(0))

the last terms on each side are equal. Since w (0) = 0 and u < 0,

if the inequality were not true we would have

u (a-d,T 0) > w (0)

but this is impossible since u(a-d,T0 ) = w(0), u C < 0 and

u(F,T 0 ) < w() for F < 0 and close to it.

The above inequality implies that u t(a-d,T 0 ) < 0 and so this

does not provide an escape from U c(K a,g ). This completes the proof

of Lemma 5.3.

S



We will show that the set U ' V of Lemma 5.3 :- :tt,-

c c

neighbourhood for W for each c-semiflow, the travellin, :av .

and 1 attached). But for the sake of hygiene, we give, a mv ..

described set that is contained in U L V . In the definition
c c

and V , 6 = w(d), so 6 depends on c and setting =
c

define

6 = supi6(c) : c O,c ]:

which is clearly less than 1. With b = e-d, if _ 3

U(a,c) u V(b,6) c U c(K a,g ) V c(K e,ge

for all c which satisfy 0 < c < c . Note also that if b is

sufficiently smaller than a then W c U(a,c) u V(b,f). We are free

to choose c < a as this is free to be chosen in U and V , butc c

must satisfy 6 > Z, which depends on E. We will see in chapter 6

that it is useful to have no restriction on c, the restriction on

is unimportant.

Theorem 5.2. If c E [0,c ] then W is an attractor in the c-semiflu%'

and there exists a 6 > a so that for any £ < a if

W c U(a,£) U V(b,6)

then U u V is an attracting neighbourhood for W in each of these

semiflows.

Proof. Consider w (U U V) = D since U u V c U u V (the depend-c C c c

encies on Kaa etc. are being suppressed, it is assumed they satisfy

the requirements in the preamble for the theorem) we have

D c wc(Uc u V) c U uVc, by Lemma 5.3. 0 E Dc and 1 c Dc.

oil .IMP,=C.Ccc
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Suppose a solution u(C,t) is in D , then it is defined for allc

t C ) and u(C,t) F U U V for all t. (Recall that x
c c

Consider the case c < c, either (A) u( ,t) - 0 as t Z, r

(B) u( ,t) - 1 as t - . If (A) happens we cannot have

lim u(F,t) = 0 unless there exists a T such that u([,T) U , i.,.c

u(E,T) C V but then lim u( ,t) = 1 since V is an attractina
c ct-).

neighbourhood of 1, which contradicts (A). So (A) implies that

lim u( ,t) = 1, which is impossible, so (A) is impossible and (B)

holds. We cannot have lim u(,,t) = 1 as it is an attractor,

lim u( ,t) = 0.

By analogous arguments, if c > c, we must have lim u( ,t) = C

and lim u( ,t) = 1.

Since the same statements obviously hold for w (U c V ), a con-c c c

sequence is that for c X c

W (U u V) c (U u V)

The inclusion from left to right is trivial but if u( ,t) 6 W (U L V c
c c c

for all t then lim u( ,t) = 0 (if c < c) and since U is a

neighbourhood of 0, u(C,t) must be in w (U u V) as well, it is a
c

similar argument for c > C.

Suppose v() E D then clearly v(+a) will also be in D
c1  c1

lim v(,t) = lim v(+a,t). Also there is a vT() E D c Uc L- Vc

such that

&
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V() = H c(T)V T(

but then V ( - (c -C )T) D and

H (T)V ( - (c -C )T) T((c 2-c )T)H (T)VT (c2-C1)T)

= H c(T)T((c 2-c )T)V ( - c2-C )T)

= H (T)V T()

so

V( ) = Nc 2T)V T( - c2- c )T)

this implies v(C) E w (U u V ), but by the same argument as above

w (U u V ) = c (U uV ) = w (U u V). So v(C) c D impliesc2  cI  cI  c2 "2 2 2 c

v(C) E D if c. c c i = 1,2, call this common set D. We must
c2  1

show that D- = D. Let u(E,t) be an orbit in D-, then either
c c

u( ,t 1- n V- for a sequence t - - , u(C,t) c U for all large
n c c n

negative t or u(F,t) E V for all large negative t. In the former

case, it is a simple consequence of Theorem 5.1 that u(U,t) would be

the travelling wave and so in D. In either of the latter cases

H (t)u(E,O) would lie in U or V respectively for some c 4 c and
c

large negative t. This is either impossible or it puts u( ,t) in D.

The proof will be complete if we can show that D = W. We con-

sider D in the c-semiflow (for the sake of notation, we shall drop

the c in .. )
c

a!



Define the set s(U), for a given set U, to be the set of u(K

where u( +s) c U. We firstly show that if u - D either (.)

u c s(U n V ), for some s, or (2) u(E) < c for all - or (3)C C

u(C) > 6 for all .

Suppose neither (2) nor (3) are true then there is a , so that

E < u( ) < 6. It must be true that lim u(F) < . and lim u(,)

otherwise some translate of u( ) would not lie in U i V and thi';
c C

is impossible as D is translation invariant (argued above for

c5xc) and DcU-L V-
c c

It follows that the set

G {p . I I u() s(V-)}c

is non-empty. Let s = inf G, then s G as V is closed. We
c

claim that u( ) c s(U-), if this were not true there would exist a
c

p so that both u(E) 4 p(V-) and u(F) j p(U-) by minimality of s
C

and the fact that U- is closed. But this is a contradiction as we
c

would then have u(E+p) 4 U- u V-, and u( +p) c D c U- u V-.
C c c C

So one of the alternatives (1), (2) or (3) above is true of

u(&) E D. If either (2) or (3) were true, since D is invariant, we

would have u(&) E {O,i}. So we have shown that

(5.6) D c {0,1) u ( U s(U- n V-))
sER

But it follows easily from theorem 5.1 that w-( U s(U- n V-)) -. W
c SER c c

and so w-(D) = W. Since w-(D) = D, D = W.c C

1L __ -
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From above D . (U L V) for any c ,
c

the proof of the theorem.

Remark: (1) In lemmas 5.2 and 5.3, D and 1 a1--

for the case c = c, this is because they obviously :r > :

in that semiflow, the travelling wave is a strinc f r

that approaches both of them. (2) From Lemmas 5.1, -.Z : Tr. 7 "

we have all we need for the theorems of charter 4, seti:. T-

specialising to the case c = 0. Note however that we Jid no .

this case in isolation, the above proof depended crucially on us

spectrum of semiflows.

III. APPLICATION OF EXTENDED CONTINUATION

Again we consider the bistable equation (1.3) where f sati>:I:

(Hl) ((H2) is not needed in this section at all).

We will apply the semiflow of section I and the results of iilti

II to the question of how solutions behave when followed out in a

radial direction with speed c. If u(r,t) is a solution, for a ;:..

c, we want to study its behaviour along lines r - ct = constant.

for any p E P set r = p+ct and we get a function v(p,t) =

u(p+ct,t) whose domain is time dependent i.e. p -ct. However, fco

each p c IR there is a T so that if t > T v(p,t) is defined: an",

so it makes sense to try and determine

-,.. .
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(5.7) !ir u (P+ct, t'
t-I

for every p c IR and this represents mcv-ng o;t in a radi dirc

with speed c. We can use the semiflow io;struzted n secion I cf

this chapter to deter.ine (5.7).

From section £ we have a sarniflo'.; '(t) rn the Fja_:e A C [, .

Let us consider the results of section 11 in this context.

In A x [O,c t there is a two-diz-ensicnal invariant nanifc ,

namely W A [O,c ] with the followini flow on it

c.

c t

-F 0

Figure 5.4

W')-re c is the speed of the one-dLmensional wave, as usual. This

Pr f :d is an attractor in A x [O,c ], by theorem 5.2, with an

" , reihbourhood given by

sm i
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[U(a,:) ,_ V b ] x [OD,c ]

where a, C, b, satisfy all the conditions given in section II.

We will compute (5.7) for initial data u(r) - A0  that satisfy,

(5.8) lim u(r) < a

(5.9) u(r,t) 1 as t - , uniformly on

compact sets.

Theorem 5.3. Suppose u(r) E A0  satisfies (5.8) and (5.9) then there

is a function :(t) = o(t) so that

(5.10) lim lu(p+ct+.(t) ,t) - ul(P) = 0
t-

where u1  is the one-dimensional travelling wave and its speed is c.

Remarks: (1) The theorem says that any spherically symmetric

solution (with the restriction of being in A 0 ) which propagates

(condition (5.6)) takes the shape of the one-dimensional travelling

wave as t -+

(2) The function u(p+ct+,(t) ,t) is actually defined on

a time-dependent domain of p's. For the norm to make strict sense we

can extend the function to be constant for P < -ct-;(t).

(3) An alternative way to stating (5.10) would be

(5.11) lim Ilu(r,t) - u 1 (r-ct-p(t))!I = 0

+
where the supremum is now taken over r e IR This is how the state-

ment of theorem 5.1 was made. It is clear that (5.10) and (5.11) are

equivalent.

................--O. 'MW W
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The main idea in the proof of theorem 5.3 is a shooting argument

for the semiflow H(t). From knowing the behaviour of lim H (t)uc

for c < c and c > c we shall make a conclusion about lim H-(t)u.
C

(Notation: we shall denote an element of A by the component that is

a function in M, the A-co-ordinate is implicit in the symmetry of

this function.)

We will need a perturbation statement similar to theorem 4.1 but

for this extended semiflow on A x [0,). A neighbourhood of a function

v(x) 6 A1 , depending on a compact set K, contained in the x l-axis,

and an c > 0, is of the form

(5.12) {u(x) I lu(x)-v(x)j < E for x E K}

Let U be such a set, or a union of such sets. Let U c M be defined

by the same inequalities. Set

(5.13) U = U x [0,1]) n A

(5.14) Ul = U n (M x [X,l])

(It is to be understood that if a Roman letter refers to a set, the

corresponding script letter refers to the associated set given by (5.13).

Similarly, if a superscript A appears.)

Let I c [0,-) be compact and N = U x I c A x 10,-). N and NX

have their obvious meanings. In the following "." refers to the

action of H(t) on A x I.

Lemma 5.4. If, for some T > 0

(5.15) ck(N • [T,-)) c Int(N)

I W W P



then there is a < 1 so that

(5.16) c •(N (T,-)) Int(N

Proof of Lemma 5.4. It suffices to show that for eacn -

there is a X < 1 so that

(5.17) cZ(N [11 IT2]) Int(N

Setting Tl = T, T2 = 2T in (5.17) and iterating yields (5.16).

We can pick an open set V and a closed set C, in A tFC"

V c C c Int(N) and

(5.18) cZ(N • [TlF 2]) c V

Now suppose there is no A for which (5.17) is satisfied. Then

there is a sequence {u } with u E U n 1
n n 'n nl

and {t so that (u ,c) t 4 V.
n n n

H(t) is a compact semiflow as compactness was proved by a global

derivative estimate which is obviously preserved under translation. It

follows that {(u ,c ) • t I has a limit point. We can assume thatn n n

(u ,c ) • t n u, c n c' and t n- t'. Using the fact thatnfn n n n

{(u ,c ) • TI is precompact, it is a standard argument to see thatnn 1

(u nc n ) tn and (u ,c') * t' have the same limit.n n

Let {v n be a sequence in U so that u -v n 0, for instancenl n n

let vn agree with un on the x1-axis above -n/l-A.X In theorem

3.2 we actually proved that the semiflow is uniformly continuous with

respect to initial data, this is a consequence of estimate (3.16).

i7 -d- ~
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It follows that this is also true for H(t) on A. It is thefn z
,

>'
"

check that (v ,c') • t' - u, but u i V and so this contradicts
n

(5.18).

Proof of Theorem 5.3. Let u(r) o A satisfy (5.,1) and (5.9).
0

ing c from section II, if c, is between 0 and c, set

I = [c,,c ] and E = u x I.

There is a set N = (U L V) x I which is an attractinq neiahbrur-

hood for the two dimensional invariant manifold of Figure 5.4. B':

Lemma 5.4, there is a , < 1 and T > 0 so that

A*ci(N • [T,-)) c Int(N ). Since c > 0, u(N) CA 1  and so N is an

attracting neighbourhood.

If b is large enough T(b)E c N by condition (5.8). Conse-

quently w(T(b)E) c W x [c,,c ].

Let d be a metric on M. Pick any 8 so that 0 < R < d(0,1).

The sphere S = {u I d(u,l) = 8} separates M into two open sets, its

interior and exterior D = (S x [0,1]) x [c,,c ] also separates

A x [c,,c ] into two disjoint open sets, with 0 in one of them and

1 in the other. If we can show that for large t H(t) (T(b)E) inter-

sects both these sets, then by connectedness it must intersect D.

We will show that for any fixed b > 0

'l if c < c

(5.19) lim H (t) (T(b)u)t+ c
=0 if c>c

If (5.19) is true for one particular b it is true for every b, by

translation invariance. To prove the second part, with the c-semiflow

7 II I . .. L .
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on A, 0 is an attractor by lemma 5.1 with U as an attracting

neighbourhood. By lemma 5.4 there is a U which is an attractina

neighbourhood for 0. If b is larae enough T(b)u U and so the

limiting behaviour follows.

For the first part, consider the set G = 'u(r,t) u(r,O) = u(r).

By lemmas 5.2 and 5.4 there is an attractinq neighbourhood of 1, V,

for the c-semiflow if 0 < c < c. If b is large enough

T(b)G V r , , since 1 E c (T(b)G) by (5.9) and translation invari-

ance. But then lim H (t)(T(b)g) = 1 for some g r G. Since
c

g = u(r,t), for some T, the first part of (5.19) must hold.

We now know that for each large .4t, 4(t)(T~b} intersects D.

Then there is a function c(t) such that Hc(t) (T(b)u) E D. As

t- -, HC(t) (T(b)u) - W x [c,,c 3 , but D is closed and there is only

one point in W that is a distance 6 from 1, so H (T(b)u) con-c (t)

verges to this point, which is not 0 or 1 and therefore is a

travelling wave, call it uI.

Rewriting this quantity by restricting to the x -axis and letting

y(t) = c(t)t, we get

(5.20) lim u(x1 + y(t),t) = u1 (x I )

(5.20) is actually in the compact-open topology but since everything is

nonincreasing in xI  (if it is > -y(t)) then (5.20) also holds in

the sup-norm. Letting y(t) = ct + p(t) and p = x we have (5.10).

That tp(t) = o(t) is an easy consequence of (5.19).

- - -



Remarks: (1) What is most interestina in Theore 5.3 is that c<-:

knowledge of one-dimensional behaviour is used. We prove noth*ni:-

directly about the spherically symmetric solutions exce:rt by rertura-

tion from their one-dimensional limiting behaviour.

(2) It is not hard to see that -(t) - - as t--,, so the

spherical wave may lag behind the one-dimensional wave, but does not

get ahead. This follows from the fact that any solution to the one-

dimensional equation is a supersolution for the spherically srmetric

eauation and such a solution can easily be found which majorises u(r)

and tends to the travelling wave (by Theorem 5.1).
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Chapter 6

Conclusion

I. INTERPRETATION OF RESULTS

In the first two sections of this chapter, we shall

sively the bistable equation (1.3) with the nonlinearit. iat-: :

(HI) and (H2).

At the end of chapter 4 we found a set, called W , that s

attractor in the semiflow on A (the world of spherically" so.retr[ •
0

data). It is perhaps not clear what the fact that this set is an

attractor means for the behaviour of the solutions of the ecuation .

this section we shall give an interpretation of this statement in Mo!.

traditional terms.

Recall that A0 consists of functions in B that are spherical:

symmetric, between 0 and 1, nonincreasing in r. Define the set

U = {u(r) E A0 I u(+-) < a}

W being an attractor translates into the following theorem.s

Theorem 6.1. U = U0 U Ua U U 1 where

U0 = {u(r) u(r,t) - 0 as t - - uniformly}

U_ = {u(r) u(r,t) - u as t - = uniformly}

U1 = {u(r) I u(r,t) - 1 as t - - uniformly

on compact sets}

Further U0 and U1 are both open and connected.

86
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Proof. Given any u(r) U, there is an a and an E so that

u C U s(a,c), pick a correspondirg V (b,5) then U s L is an
S S S s

attracting neighbourhood for WS

U SV

U

Us /-

Figure 6.1

and so everything in U u V tends to one of 0, u and 1, there-S S

fore so does u(r), it is obvious that in the first two cases the con-

vergence is uniform.

Since 0 and 1 are attractors in their own right, U0  and U1

must both be open and since neighbourhoods of 0 and 1 are connected

they must also be connected. This completes the proof.

Since U is obviously connected the theorem says that the removal

of U_ disconnects the set into these two components that give the
u

propagation and decay behaviour respectively. So U separates the

two regimes and, in some sense, gives the optimal set of comparison

functions for both propagation and decay. This is, practically speak-

ing, not particularly useful as these are hard to locate except near

tbut they do give an exact picture of the situation.

i~XZI7



Another way to express these facts is that U- is a codimension
u

one set and so it is "small". The two pieces it separates are the

regimes of propagation and decay respectively.

II. ASYMPTOTIC STATES AND PERMANENT SOLUTIONS

We have not quite shown that the propagation regime U1 is an SAS

with respect to A0  (see definition 1.4). It is open in the compact-

open topology and so also in the sup-norm but it would require an esti-

mate on how ,(t) varied across initial data to show that elements of

U1 had the same sup-norm asymptotic behaviour, (5.10) is not quite

enough. If a definition were formulated which bore the relation to

definition 1.2 that orbital stability does to stability in qualitative

ordinary differential equations, U1 would be an SAS in this other sense.

A0 has thrce, albeit invariant, conditions on it. As far as U1

being an asymptotic state is concerned, it is not hard to drop the con-

dition 0 < u(r) < 1, and it may be possible to drop the monotonicity

condition. But the major open question is whether the condition of

spherical symmetry is necessary. For instance it is not known whether

there could be a wave that propagates in 2 with an elliptical

wave-front.

For the above, the only feature of W used is that it containss

three equilibrium points and orbits joining them. We did not use the

fact that there are only two connecting orbits in it. This was proved

in chapter 4. In terms of theorem 6.1, there is one in U0 and one in

- R
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U . Each of these connecting orbits is a permanent solution (see defi-

nition 1.3). Consequently there is a unique permanent solution iU each

SAS U0 and UI.

These permanent solutions are "special" solutions of the equation

as we would generally only expect forward existence in parabolic equa-

tions. Nevertheless, it is not clear what the real significance of

their being unique is. Such permanent solutions as equilibria and

travelling waves supply the asymptotic information for their SAS. If

we consider the SAS U1 this information is given by the one-dimen-

sional travelling waves, not this permanent solution in U1 . This

solution may however be relevant to the asymptotic behaviour of non-

spherically symmetric data since it contains spherical information

and the travelling waves do not.

III. COMMENTS ON THE TECHNIQUE

The main technique in this work is the construction of the space

A which relates the one-dimensional and spherically symmetric

behaviour of a reaction - diffusion equation. The space realises the

intuition of the one-dimensional world living out "at infinity" in the

spherical world. By constructing a concrete mathematical object, such

as A, we can see exactly what is forced on the spherically-symmetric

solutions by this relationship.

The presentation of this construction here treats this as a homo-

topy-continuation method. But, in many respects, it is more closely

related to the technique in 'Ordinary Differential Equations' of

I7..
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pasting a manifold onto phase space which re:rese-nt5 . ":

behaviour. From studying the induced flow on this manf7 i,

sions can be made, by continuity, about the flow on th. .. •

space. A recent example of the power of this technicu', : K i:.

[1], and this work is partially responsible for insriinc:

this idea here.

It is a drawback in the technique that the underl' in.: t>:

A is the compact-open topology because stability staterntr.- lir. 7

easily made in the sup-norm topology. This topology is usei i.n

essential ways, for compactness of the semiflow and to make the .;a:

tie together so that perturbation is possible from A1 to A..

The way to circumvent the problem is to restrict the semiflow to

an invariant subspace. This subspace should have the property that an

open neighbourhood of the solution whose stability is in cuestion with

the inherited topology should be effectively the same as that set with.

the sup-norm topology. For example, if the stable one-dimensional

behaviour expected is given by a travelling pulse or front then the

invariant subspace should consist of functions that look like the wave

as x + ±=. So the invariant subspace makes the data be close to thce

wave at + and consequently being close in the compact-open topoloQ,:

implies the same in the sup-norm topology. This also shows the

necessity of considering an interval of different speeds. The wave can

move, metaphorically, "out of sight" in the compact-open topology unler_.s

we focus on it at the correct speed.



So the key to a.:lyinq the technique lies ir fr. fil 'X '

right 1places where the srace should be tichtened to th:

log" or loosened to the compact-open torology.

'_ _ -
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